212 research outputs found

    Generation and characterization of pigment mutants of Chlamydomonas reinhardtii CC-124

    Get PDF
    The induced mutagenesis method for deriving pigment mutants of a green microalga, Chlamydomonas reinhardtii CC-124 and their pigment composition as well as ability to assess mutability of contaminated aquatic ecosystems were studied. In the present study, 14086 mutants (colonies) were obtained by exposure of the wild strain, C. reinhardtii CC-124, to 1, 2, 3, 5 min of ultraviolet (UV) irradiation. After screening, these mutants (colonies) revealed four pigmented mutants (124y-1, 124p-1, 124y-2 and 124p- 2). Compared to the wild CC-124, these mutants are characterized by a decrease in chlorophyll a & b content and an increase in carotenoids. The lowest decrease in chlorophyll a was three to four folds, while the highest increase in carotenoids was two to four folds. The result of bio-test, using the resulting pigment mutant of C. reinhardtii 124y-1 showed that mutagenic activity was observed significantly in both Tekeli River and Pavlodar Oil Refinery in Kazakhstan; the waste water of the Pavlodar Oil Refinery had high-toxicity while the water of the Tekeli River had medium-toxicity.Keywords: Ultraviolet (UV) mutagenesis, Chlamydomonas reinhardtii, biotesting

    SYNTHESIS AND EVALUATION OF ETHYL (4-(N-(THIAZOL-2-YL) SULFAMOYL) PHENYL)CARBAMATE (TSPC) AS A CORROSION INHIBITOR FOR MILD STEEL IN 0.1M HCL

    Get PDF
    Laboratory synthesized ethyl (4-(N-(thiazol-2-yl)sulfamoyl)phenyl)carbamate (TSPC), characterized by 1H NMR spectroscopy, was evaluated as corrosion inhibitor of mild steel in 0.1M HCl using electrochemical techniques. Open circuit potential, potentiodynamic polarization and impedance spectroscopy were used to evaluate the inhibition efficiency of (TSPC) at various concentrations. The obtained electrochemical data indicated that (TSPC) acts as moderate corrosion inhibitor for mild steel in acidic media. It is found that the inhibition efficiency increases with the concentration of the inhibitor till 400ppm. The adsorption isotherm involving physisorption of (TSPC) at room temperature and the experimental data complied to the Langmuir adsorption isotherms and the negative values of the Gibb’s free energy of adsorption obtained suggested that inhibitor molecules have been spontaneously adsorbed onto the mild steel surface

    A Study of the Number of Wavelengths Impact in the Optical Burst Switching Core Node

    Get PDF
    In Wavelength Division Multiplexing (WDM), several wavelengths run on an optical fiber link that connects two optical switches. The multiple wavelengths are exploited that minimized the contention problem in the Optical Burst Switching (OBS) core node. Mathematical model is used in order to investigate the impact of the wavelengths numbers OBS core node. Two performance metrics are proposed such as the steady-state throughput and the probability of burst loss using steady- state occupancy probabilities and Poisson traffic model arrivals. Numerical results show that at different values of network traffic and some design parameters such as wavelength conversion capability and the mean arrival rate could reveal the OBS performance

    Prevalence of the colistin resistance gene <i>MCR-1</i> in colistin-resistant <i>Klebsiella pneumoniae</i> in Egypt

    Get PDF
    Klebsiella pneumoniae is a nosocomial pathogen with high morbidity and mortality rates in hospitalized patients. The emergence of multidrug-resistant K. pneumoniae has become more challenging to treat, with the prevalence of colistin-resistance. Therefore, reliable methods for detecting colistin resistance are required. Many plants' essential oils have antimicrobial activity and have been used to combat multiple antibiotic resistances. This study aimed to investigate the characterization and prevalence of the colistin resistance gene mcr-1 in K. pneumoniae in Egypt, evaluate rapid polymyxin NP test, determine the transferability of mcr-1 gene, and study the synergistic activity of eugenol combined with colistin against K. pneumoniae isolates. Eighty-two K. pneumonia isolates were collected from different human samples, followed by antibiotic susceptibility testing, rapid polymyxin NP test, and detection of the mcr-1 gene and its transfer frequency. Determination of the MICs of colistin alone and in combination with eugenol was performed, then mcr-1 gene expression was determined in the presence of eugenol. Thirty-two isolates (39%) were colistin-resistant. Rapid polymyxin NP test failed to detect resistant isolates with MICs below 32 µg/mL. Detection of mcr-1 gene was made in 27 (84%) of colistin resistant isolates. The rest isolates possess alteration in the mgrB gene which probably causes colistin resistance. The mcr-1 gene was transferred by conjugation to other sensitive isolates. MIC of eugenol ranged from 416 to 1664 µg/mL, and FICI ranged from 0.265 to 0.75. Results also revealed suppression of mcr-1 gene expression in the presence of sub MIC of eugenol. Our results demonstrated a high prevalence of mcr-1 in Egypt and its ability to transfer to other strains. Difficult determination of colistin-resistant isolates with low values with rapid polymyxin NP test was apparent. Eugenol exerted a synergistic effect with colistin and improved its antimicrobial activity

    Geomatics-Based Modeling and Hydrochemical Analysis for Groundwater Quality Mapping in the Egyptian Western Desert: A Case Study of El-Dakhla Oasis

    Get PDF
    Groundwater is the single source of water in El-Dakhla Oasis, western desert, Egypt. The main objective of this study is an assessment of groundwater in the area for agriculture and drinking compared to Egyptian and World Health Organization criteria. Most the contamination of water in the study area comes from human and agricultural activities. Thirty soil profiles were studied in the area and we assessed soil quality. Seventy-four samples were taken from the area’s groundwater wells to assess the chemical characteristics of the groundwater. Moreover, the contamination of groundwater by farming and anthropogenic activities was assessed using a land use/land cover (LULC) map. Nine standard water criteria were determined to assess groundwater quality for agriculture. Furthermore, the resulting risk to human health and agricultural crops has been addressed. Therefore, the drinking quality of groundwater samples is graded as low as the hydrochemical study showed high TH, EC, TDS, Ca2+, Mg2+, Mn2+, and Fe2+ contents of 40.5%, 2.7%, 1.4%, 3.8%, 1.6%, 86.5%, and 100%, respectively. Human health is risked by drinking this water, which negatively affects hair, skin, and eyes, with greatest exposure to enteric pathogens. Using these criteria, the majority of groundwater samples cause harmful effects on soil types and are toxic to sensitive crops (vegetable crops). In conclusion, the output of this research is a map showing groundwater suitable for consumption and agriculture in El-Dakhla Oasis based on all indices using the Geographic Information Systems (GIS) model. Additionally, there was evidence of a linear relationship between soil quality and irrigation water quality (R2 = 0.90). This emphasis on tracking changes in soil/water quality was brought on by agricultural practices and environmental variables

    Study of Optical and Structural Characteristics of Ceria Nanoparticles Doped with Negative and Positive Association Lanthanide Elements

    Get PDF
    This paper studies the effect of adding lanthanides with negative association energy, such as holmium and erbium, to ceria nanoparticles doped with positive association energy lanthanides, such as neodymium and samarium. That is what we called mixed doped ceria nanoparticles (MDC NPs). In MDC NPs of grain size range around 6 nm, it is proved qualitatively that the conversion rate from Ce 4+ to Ce 3+ is reduced, compared to ceria doped only with positive association energy lanthanides. There are many pieces of evidence which confirm the obtained conclusion. These indications are an increase in the allowed direct band gap which is calculated from the absorbance dispersion measurements, a decrease in the emitted fluorescence intensity, and an increase in the size of nanoparticles, which is measured using both techniques: transmission electron microscope (TEM) and X-ray diffractometer (XRD). That gives a novel conclusion that there are some trivalent dopants, such as holmium and erbium, which can suppress Ce 3+ ionization states in ceria and consequently act as scavengers for active O-vacancies in MDC. This promising concept can develop applications which depend on the defects in ceria such as biomedicine, electronic devices, and gas sensors

    Groundwater Quality Assessment Using Multi-Criteria GIS Modeling in Drylands: A Case Study at El-Farafra Oasis, Egyptian Western Desert

    Get PDF
    first_pagesettingsOrder Article Reprints Open AccessArticle Groundwater Quality Assessment Using Multi-Criteria GIS Modeling in Drylands: A Case Study at El-Farafra Oasis, Egyptian Western Desert by Hanaa A. Megahed 1,Hossam M. GabAllah 1,Rasha H. Ramadan 2ORCID,Mohamed A. E. AbdelRahman 2,*ORCID,Paola D’Antonio 3,*ORCID,Antonio Scopa 3ORCID andMahmoud H. Darwish 4ORCID 1 Division of Geological Applications and Mineral Resources, National Authority for Remote Sensing and Space Sciences (NARSS), Cairo 1564, Egypt 2 Division of Environmental Studies and Land Use, National Authority for Remote Sensing and Space Sciences (NARSS), Cairo 1564, Egypt 3 Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali (SAFE), Università degli Studi della Basilicata, Viale dell’Ateneo Lucano, 10, 85100 Potenza, Italy 4 Geology Department, Faculty of Science, New Valley University, El Kharga 72511, Egypt * Authors to whom correspondence should be addressed. Water 2023, 15(7), 1376; https://doi.org/10.3390/w15071376 Received: 15 February 2023 / Revised: 26 March 2023 / Accepted: 27 March 2023 / Published: 3 April 2023 (This article belongs to the Special Issue Water Security, Water Economics and the Evolution of Water Consumption) Download Browse Figures Versions Notes Abstract The most critical issue that was the main research interest is its groundwater quality which is vital for public health concerns. Groundwater is a significant worldwide water supply for diverse communities, especially in dryland regions. Groundwater quality assessment in desert systems is largely hindered by the lack of hydrological data and the remote location of desert Oases. This study provides a preliminary understanding of the influences of climate, land usage, and population growth on the groundwater quality in El-Farafra Oasis in the Western Desert in Egypt from 2000 to now. Therefore, the study’s main objective was to determine the extent of change in temporal water quality and the factors causing it. The present study integrates chemical analyses and geospatial modeling better to assess groundwater quality in the study area. A chemical analysis of thirty-one groundwater samples from wells representing each study area was carried out during three time periods (2000, 2010, and 2022). Several chemical properties of groundwater samples gathered from wells in the research area were analyzed. Furthermore, the groundwater quality trend from 2000 to the present was identified using three approaches: Wilcox and Schoeller Diagram in Aq.QA software, interpolation in the ArcGIS software, and Ground Water Quality Index (GWQI). Moreover, the influence of changing land usage on groundwater quality was studied, and it was found that the increase in agriculture and urbanization areas is linked to groundwater quality degradation. The findings revealed that the barren area in 2000, 2010, and 2022 was 371.7, 362.0, and 343.2 km2, respectively, which indicates a substantial decrease of 6.2% within this research timeframe. In contrast, agriculture and human-made structures have expanded by 1.8%. Also, population growth has led to an increase in water consumption as the population has grown at a rate of 7.52% annually from 2000 to 2020. As the climatic condition increases from 2000 to 2022, these changes could extend to the water quality in shallow aquifers with increasing evaporation. Based on the water quality spatial model, it is found that, despite a declining tendency in the rate of precipitation and an expansion in agricultural areas and population growth, the water quality was still appropriate for human and farming consumption in large areas of the study area. The presented approach is applicable to the assessment of groundwater in desert regions in the Middle East area

    Enhanced oral permeability of Trans-Resveratrol using nanocochleates for boosting anticancer efficacy; in-vitro and ex-vivo appraisal

    Get PDF
    Hepatocellular carcinoma (HCC) is a prevalent liver cancer representing the fourth most lethal cancer worldwide. Trans-Resveratrol (T-R) possesses a promising anticancer activity against HCC. However, it suffers from poor bioavailability because of the low solubility, chemical instability, and hepatic metabolism. Herein, we developed T-R-loaded nanocochleates using a simple trapping method. Nanocarriers were optimized using a comprehensive in-vitro characterization toolset and evaluated for the anticancer activity against HepG2 cell line. T-R-loaded nanocochleates demonstrated monodispersed cylinders (163.27 ± 2.68 nm and 0.25 ± 0.011 PDI) and −46.6 mV ζ-potential. They exhibited a controlled biphasic pattern with minimal burst followed by sustained release for 72 h. Significant enhancements of Caco-2 transport and ex-vivo intestinal permeation over liposomes, with 1.8 and 2.1-folds respectively, were observed. Nanocochleates showed significant reduction of 24 h IC50 values compared to liposomes and free T-R. Moreover, an efficient knockdown of anti-apoptotic (Bcl-2) and cancer stemness (NANOG) genes was demonstrated. To the best of our knowledge, we are the first to develop T-R loaded nanocochleates and scrutinize its potential in suppressing NANOG expression, 2-folds lower, compared to free T-R. According to these auspicious outcomes, nanocochleates represent a promising nanoplatform to enhance T-R oral permeability and augment its anticancer efficacy in the treatment of HCC

    Spermatozoal Fractalkine Signaling Pathway Is Upregulated in Subclinical Varicocele Patients with Normal Seminogram and Low-Level Leucospermia

    Get PDF
    Background. Fractalkine is produced in seminal plasma in small amounts and correlates with sperm motility. Purpose. To investigate the possible effect of low-level leucospermia on spermatozoa oxidative stress and sDNA fragmentation in patients with subclinical varicocele and apparently normal seminogram, and also to study the role of spermatozoal fractalkine and its receptor (CX3CR1) gene expression as a marker of spermatozoa inflammatory response. Methods. This study included 80 patients with subclinical varicocele (45 fertile and 35 infertile) and 45 age-matched fertile volunteers. In semen samples, fractalkine and CX3CR1 gene expression were investigated by qRT-PCR. Moreover, seminal plasma malondialdehyde (MDA) and total antioxidant capacity (TAC) were measured. Results. There are significant decrease in semen quality and significant increase in seminal leucocytes count in subclinical varicocele. Our results show a significant increase in MDA and TAC levels, DNA fragmentation, and expression levels of fractalkine and its receptor (CX3CR1) in subclinical varicocele groups. Conclusion. Subclinical varicocele induces seminal and spermatozoal subclinical inflammatory response in the form of low-level leucospermia and increased mRNA expression of the fractalkine signaling pathway, leading to increased spermatozoal ROS production, oxidative stress, and DNA fragmentation. These could cooperate in the pathogenesis of delayed fertility in males with subclinical varicocele
    • …
    corecore