205 research outputs found

    Digital Age Security Threats: Challenges to IR Theories

    Full text link
    The significance of information and communication technology (ICT) has been widely felt not only within a state but also among and between the states in their multifarious day-to-day interactions. Information and communication technology can be rightly said as constituting the nerve center of, both, domestic and International politics. These have become guiding metaphor for domestic and International politics to maintain stability and political order, provide peace and security and protect people from natural catastrophes. Sovereign state systems are no longer impregnable, sacrosanct; the unhindered flow of information and the revolutionary exposure of the people irrespective of which state, security or culture they belong to, to the very sinews of information, have made the entire world a melting pot of the absoluteness and arbitrariness of states. Earlier, issues confined to the boundary of the state or states have turned out to be global and mustered support from all sections, countries, nations and culture of the world. A new kind of threat from information and communication technologies seems to affect the states. DOI: 10.5281/zenodo.336703

    Solvent-Free One-Pot Synthesis of Epoxy Nanocomposites Containing Mg(OH)2 Nanocrystal−Nanoparticle Formation Mechanism

    Get PDF
    [Image: see text] Epoxy nanocomposites containing Mg(OH)(2) nanocrystals (MgNCs, 5.3 wt %) were produced via an eco-friendly “solvent-free one-pot” process. X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and thermogravimetric analysis (TGA) confirm the presence of well-dispersed MgNCs. HRTEM reveals the presence also of multisheet-silica-based nanoparticles and a tendency of MgNCs to intergrow, leading to complex nanometric structures with an intersheet size of ∌0.43 nm, which is in agreement with the lattice spacing of the Mg(OH)(2) (001) planes. The synthesis of MgNCs was designed on the basis of a mechanism initially proposed for the preparation of multisheet-silica-based/epoxy nanocomposites. The successful “in situ” generation of MgNCs in the epoxy via a “solvent-free one-pot” process confirms the validity of the earlier disclosed mechanism and thus opens up possibilities of new NCs with different fillers and polymer matrix. The condition would be the availability of a nanoparticle precursor soluble in the hydrophobic resin, giving the desired phase through hydrolysis and polycondensation

    ALIPHATIC SILICA‐EPOXY SYSTEMS CONTAINING DOPO‐BASED FLAME RETARDANTS, BIO‐WASTES, AND OTHER SYNERGISTS

    Get PDF
    Most industrial applications require polymer‐based materials showing excellent fire performances to satisfy stringent requirements. No‐dripping and self‐extinguishing hybrid silica‐epoxy composites can be prepared by combining tailored sol‐gel synthesis strategies with DOPO‐based flame retardants, bio‐wastes, and other synergists. This approach allows for achieving V‐0 rating in UL‐94 vertical flame spread tests, even using a sustainable route, aliphatic amine as hardener, and low P loadings

    12th EASN International Conference on "Innovation in Aviation & Space for opening New Horizons"

    Get PDF
    Epoxy resins show a combination of thermal stability, good mechanical performance, and durability, which make these materials suitable for many applications in the Aerospace industry. Different types of curing agents can be utilized for curing epoxy systems. The use of aliphatic amines as curing agent is preferable over the toxic aromatic ones, though their incorporation increases the flammability of the resin. Recently, we have developed different hybrid strategies, where the sol-gel technique has been exploited in combination with two DOPO-based flame retardants and other synergists or the use of humic acid and ammonium polyphosphate to achieve non-dripping V-0 classification in UL 94 vertical flame spread tests, with low phosphorous loadings (e.g., 1-2 wt%). These strategies improved the flame retardancy of the epoxy matrix, without any detrimental impact on the mechanical and thermal properties of the composites. Finally, the formation of a hybrid silica-epoxy network accounted for the establishment of tailored interphases, due to a better dispersion of more polar additives in the hydrophobic resin

    Recyclable inherently flame-retardant thermosets: Chemistry, properties and applications

    Get PDF
    Thermosets are polymeric materials that contain permanent networks and thus are difficult to recycle. They are not reprocessable once cured and often do not degrade under mild conditions. Over the past decades, the use of polymeric materials in fire safety applications has increased, and so is the need for them to be more sustainable. From this standpoint, recently two major challenges in designing next-generation thermosets have attracted much attention in the scientific community: embedded fire safety and reprocessability/recyclability. In this review, a detailed report on research progress in design of fire-safe and thermomechanical reprocessable/recyclable thermosets is presented. Such thermosets are designed not only to enable the reuse and recycling of the polymer material but also recover valuable components (carbon fibers or rare additives) that are encapsulated in the matrix. The flame retardant recyclable thermoset materials are categorized based on the chemistry of labile bonds (covalent adaptable networks): i.e. (i) esters (carboxylic and phosphate esters), (ii) sulfur-containing linkages, (iii) nitrogen-containing structures, and (iv) other phosphorus-containing structures. In addition, the use of bio-based raw materials in constructing these thermosets is also highlighted. The synthetic route, fire performance, recycling methods, degradation mechanisms, and progress in various approaches being developed by researchers towards recyclable and fire-safe thermosets are summarized in detail in this review

    Effect of the Coupling Agent (3-Aminopropyl) Triethoxysilane on the Structure and Fire Behavior of Solvent-Free One-Pot Synthesized Silica-Epoxy Nanocomposites

    Get PDF
    Uniformly distributed silica/epoxy nanocomposites (2 and 6 wt.% silica content) were obtained through a "solvent-free one-pot" process. The inorganic phases were obtained through "in situ" sol-gel chemistry from two precursors, tetraethyl orthosilicate (TEOS) and (3-aminopropyl)-triethoxysilane (APTES). APTES acts as a coupling agent. Surprisingly when changing TEOS/APTES molar ratio (from 2.32 to 1.25), two opposite trends of glass transformation temperature (Tg) were observed for silica loading, i.e., at lower content, a decreased Tg (for 2 wt.% silica) and at higher content an increased Tg (for 6 wt.% silica) was observed. High-Resolution Transmission Electron Microscopy (HRTEM) showed the formation of multi-sheet silica-based nanoparticles with decreasing size at a lower TEOS/APTES molar ratio. Based on a recently proposed mechanism, the experimental results can be explained by the formation of a co-continuous hybrid network due to reorganization of the epoxy matrix around two different "in situ" sol-gel derived silicatic phases, i.e., micelles formed mainly by APTES and multi-sheet silica nanoparticles. Moreover, the concentration of APTES affected the size distribution of the multi-sheet silica-based nanoparticles, leading to the formation of structures that became smaller at a higher content. Flammability and forced-combustion tests proved that the nanocomposites exhibited excellent fire retardancy
    • 

    corecore