944 research outputs found

    Experimental arthritis is dependent on mouse mast cell protease-5

    Full text link
    © 2017 by The American Society for Biochemistry and Molecular Biology, Inc. The constitutive heparin+ (HP) mast cells (MCs) in mice express mouseMCprotease (mMCP)-5 and carboxypeptidaseA (mMC-CPA). The amino acid sequence ofmMCP-5is most similar to that of human chymase-1, as are the nucleotide sequences of their genes and transcripts. Using a homologous recombination approach, a C57BL/6 mouse line was created that possessed a disrupted mMCP-5 gene. The resulting mice were fertile and had no obvious developmental abnormality. Lack of mMCP-5 protein did not alter the granulation of the IL-3/IL-9-dependent mMCP-2+ MCs in the jejunal mucosa of Trichinella spiralisinfected mice. In contrast, the constitutive HP+ MCs in the tongues of mMCP-5-null mice were poorly granulated and lacked mMC-CPA protein. Bone marrow-derived MCs were readily developed from the transgenic mice using IL-3. Although these MCs contained high levels of mMC-CPA mRNA, they also lacked the latter exopeptidase. mMCP-5 protein is therefore needed to target translated mMC-CPA to the secretory granule along with HP-containing serglycin proteoglycans. Alternately, mMCP-5 is needed to protect mMC-CPA from autolysis in the cell's granules. Fibronectin was identified as a target of mMCP-5, and the exocytosis ofmMCP-5from theMCs in the mouse's peritoneal cavity resulted in the expression of metalloproteinase protease-9, which has been implicated in arthritis. In support of the latter finding, experimental arthritis was markedly reduced in mMCP-5-null mice relative to wildtype mice in two disease models

    CDK-dependent nuclear localization of B-Cyclin Clb1 promotes FEAR activation during meiosis I in budding yeast

    Get PDF
    Cyclin-dependent kinases (CDK) are master regulators of the cell cycle in eukaryotes. CDK activity is regulated by the presence, post-translational modification and spatial localization of its regulatory subunit cyclin. In budding yeast, the B-cyclin Clb1 is phosphorylated and localizes to the nucleus during meiosis I. However the functional significance of Clb1's phosphorylation and nuclear localization and their mutual dependency is unknown. In this paper, we demonstrate that meiosis-specific phosphorylation of Clb1 requires its import to the nucleus but not vice versa. While Clb1 phosphorylation is dependent on activity of both CDK and polo-like kinase Cdc5, its nuclear localization requires CDK but not Cdc5 activity. Furthermore we show that increased nuclear localization of Clb1 during meiosis enhances activation of FEAR (Cdc Fourteen Early Anaphase Release) pathway. We discuss the significance of our results in relation to regulation of exit from meiosis I

    BPS Monopole Equation in Omega-background

    Full text link
    We study deformed supersymmetries in N=2 super Yang-Mills theory in the Omega-backgrounds characterized by two complex parameters ϵ1,ϵ2\epsilon_1, \epsilon_2. When one of the ϵ\epsilon-parameters vanishes, the theory has extended supersymmetries. We compute the central charge of the algebra and obtain the deformed BPS monopole equation. We examine supersymmetries preserved by the equation.Comment: 14 pages, typos corrected, published version in JHE

    N=2 Instanton Effective Action in Omega-background and D3/D(-1)-brane System in R-R Background

    Full text link
    We study the relation between the ADHM construction of instantons in the Omega-background and the fractional D3/D(-1)-branes at the orbifold singularity of C \times C^2/Z_2 in Ramond-Ramond (R-R) 3-form field strength background. We calculate disk amplitudes of open strings connecting the D3/D(-1)-branes in certain R-R background to obtain the D(-1)-brane effective action deformed by the R-R background. We show that the deformed D(-1)-brane effective action agrees with the instanton effective action in the Omega-background.Comment: 35 pages, no figures, references adde

    Clinical application of a rapid microbiological test based on capillary zone electrophoresis to assess local skin infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The basic clinical problem associated with infection treatment is the fact that classic, commonly and routinely used isolation and identification methods are based on long-term processes of a phenotypic analysis of microorganisms. Consequently sometimes, especially in small centres, rapid implementation of antibacterial treatment becomes delayed.</p> <p>The work presents the initial results of rapid microbiological identification based on an original method of capillary zone electrophoresis (CZE). The study involved the analysis of 78 biological samples from post-operative wounds and trophic ulcers.</p> <p>Results</p> <p>The attempt was made to identify individual bacterial species based on characteristic features of electropherograms achieved. Finally, G(+) cocci type bacteria and different G(-) rods were identified with sensitivity of 88.1% and specificity of 100%.</p> <p>Conclusions</p> <p>Based on the clinical trials using an electrophoretic technique in the field of microbiological diagnostics of infected exudate from a post-operative wound it can be concluded that it is a rapid and relatively sensitive method for initial identification of infectious pathogens.</p

    Identification of a Mutation Associated with Fatal Foal Immunodeficiency Syndrome in the Fell and Dales Pony

    Get PDF
    The Fell and Dales are rare native UK pony breeds at risk due to falling numbers, in-breeding, and inherited disease. Specifically, the lethal Mendelian recessive disease Foal Immunodeficiency Syndrome (FIS), which manifests as B-lymphocyte immunodeficiency and progressive anemia, is a substantial threat. A significant percentage (∼10%) of the Fell ponies born each year dies from FIS, compromising the long-term survival of this breed. Moreover, the likely spread of FIS into other breeds is of major concern. Indeed, FIS was identified in the Dales pony, a related breed, during the course of this work. Using a stepwise approach comprising linkage and homozygosity mapping followed by haplotype analysis, we mapped the mutation using 14 FIS–affected, 17 obligate carriers, and 10 adults of unknown carrier status to a ∼1 Mb region (29.8 – 30.8 Mb) on chromosome (ECA) 26. A subsequent genome-wide association study identified two SNPs on ECA26 that showed genome-wide significance after Bonferroni correction for multiple testing: BIEC2-692674 at 29.804 Mb and BIEC2-693138 at 32.19 Mb. The associated region spanned 2.6 Mb from ∼29.6 Mb to 32.2 Mb on ECA26. Re-sequencing of this region identified a mutation in the sodium/myo-inositol cotransporter gene (SLC5A3); this causes a P446L substitution in the protein. This gene plays a crucial role in the regulatory response to osmotic stress that is essential in many tissues including lymphoid tissues and during early embryonic development. We propose that the amino acid substitution we identify here alters the function of SLC5A3, leading to erythropoiesis failure and compromise of the immune system. FIS is of significant biological interest as it is unique and is caused by a gene not previously associated with a mammalian disease. Having identified the associated gene, we are now able to eradicate FIS from equine populations by informed selective breeding

    False negative results from using common PCR reagents

    Get PDF
    Background\ud The sensitivity of the PCR reaction makes it ideal for use when identifying potentially novel viral infections in human disease. Unfortunately, this same sensitivity also leaves this popular technique open to potential contamination with previously amplified PCR products, or "carry-over" contamination. PCR product carry-over contamination can be prevented with uracil-DNA-glycosylase (UNG), and it is for this reason that it is commonly included in many commercial PCR master-mixes. While testing the sensitivity of PCR assays to detect murine DNA contamination in human tissue samples, we inadvertently discovered that the use of this common PCR reagent may lead to the production of false-negative PCR results.\ud \ud Findings\ud We show here that contamination with minute quantities of UNG-digested PCR product or any negative control PCR reactions containing primer-dimers regardless of UNG presence can completely block amplification from as much as 60 ng of legitimate target DNA.\ud \ud Conclusions\ud These findings could potentially explain discrepant results from laboratories attempting to amplify MLV-related viruses including XMRV from human samples, as none of the published reports used internal-tube controls for amplification. The potential for false negative results needs to be considered and carefully controlled in PCR experiments, especially when the target copy number may be low - just as the potential for false positive results already is

    Biocompatible Polyhydroxyethylaspartamide-based Micelles with Gadolinium for MRI Contrast Agents

    Get PDF
    Biocompatible poly-[N-(2-hydroxyethyl)-d,l-aspartamide]-methoxypoly(ethyleneglycol)-hexadecylamine (PHEA-mPEG-C16) conjugated with 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid-gadolinium (DOTA-Gd) via ethylenediamine (ED) was synthesized as a magnetic resonance imaging (MRI) contrast agent. Amphiphilic PHEA-mPEG-C16-ED-DOTA-Gd forms micelle in aqueous solution. All the synthesized materials were characterized by proton nuclear magnetic resonance (1H NMR). Micelle size and shape were examined by dynamic light scattering (DLS) and atomic force microscopy (AFM). Micelles with PHEA-mPEG-C16-ED-DOTA-Gd showed higher relaxivities than the commercially available gadolinium contrast agent. Moreover, the signal intensity of a rabbit liver was effectively increased after intravenous injection of PHEA-mPEG-C16-ED-DOTA-Gd

    Validating the Time and Change test to screen for dementia in elderly Koreans

    Get PDF
    BACKGROUND: We assessed the applicability of the T&C test as an accurate and convenient means to screen for dementia in primary care and community settings. METHODS: The study group comprised 59 patients and 405 community participants, all of who were aged 65 years and over. The time component of the T&C test evaluated the ability of a subject to comprehend clock hands that indicated a time of 11:10, while the change component of the T&C test evaluated the ability of a subject to make 1,000 Won from a group of coins with smaller denominations (one 500, seven 100, and seven 50 Won coins). RESULTS: The T&C test had a sensitivity and specificity of 73.0 and 90.9%, respectively, and positive and negative predictive values of 93.1, and 66.7%, respectively. The test-retest and interobserver agreement rates were both 95% (κ = 0.91) (time interval, 24 hours). The association between the T&C test and K-MMSE test was modest, while significant (r = 0.422, p < 0.001). The T&C test scores were not influenced by educational status. CONCLUSIONS: We conclude that the T&C test is useful as supplemental testing of important domains (e.g., calculation, conceptualization, visuospatial) to traditional measures such as the MMSE. However, because T&C test is simple, rapid, and easy to use, it can be applied conveniently to elderly subjects by non-specialist personnel who receive training

    TNF autovaccination induces self anti-TNF antibodies and inhibits metastasis in a murine melanoma model

    Get PDF
    TNF is a proinflammatory cytokine involved in the pathogenesis of chronic inflammatory diseases, but also in metastasis in certain types of cancer. In terms of therapy, TNF is targeted by anti-TNF neutralising monoclonal antibodies or soluble TNF receptors. Recently, a novel strategy based on the generation of self anti-TNF antibodies (TNF autovaccination) has been developed. We have previously shown that TNF autovaccination successfully generates high anti-TNF antibody titres, blocks TNF and ameliorates collagen-induced arthritis in DBA/1 mice. In this study, we examined the ability of TNF autovaccination to generate anti-TNF antibody titres and block metastasis in the murine B16F10 melanoma model. We found that immunisation of C57BL/6 mice with TNF autovaccine produces a 100-fold antibody response to TNF compared to immunisation with phosphate-buffered saline vehicle control and significantly reduces both the number (P&lt;0.01) and size of metastases (P&lt;0.01) of B16F10 melanoma cells. This effect is also observed when an anti-TNF neutralising monoclonal antibody is administered, confirming the essential role TNF plays in metastasis in this model. This study suggests that TNF autovaccination is a cheaper and highly efficient alternative that can block TNF and reduce metastasis in vivo and trials with TNF autovaccination are already underway in patients with metastatic cancer
    corecore