20 research outputs found

    The evolution of saline lake waters: gradual and rapid biogeochemical pathways in the Basotu Lake District, Tanzania

    Full text link
    The biogeochemical evolution of solutes markedly alters the chemistry in the closed-basin maar lakes that comprise the Basotu Lake District (Tanzania, East Africa). Examination of 11 (out of 13) lakes in the Basotu Lake District identified two distinct evolutionary pathways: a gradual path and a rapid path. During the course of biogeochemical evolution these waters follow either the gradual path alone or a combination of the gradual and rapid paths. Solute evolution along the gradual path is determined by all of the biogeochemical processes that for these waters appear to be tightly coupled to evaporative concentration (e.g. mineral precipitation, sorption and ion exchange, C0 2 degassing, and sulfate reduction). Rapid evolution occurs when mixing events suddenly permit H 2 S to be lost to the atmosphere. The chemistry of waters undergoing rapid evolution is changed abruptly because loss of every equivalent of sulfide produces an equivalent permanent alkalinity.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42881/1/10750_2004_Article_BF00026937.pd

    The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity.

    No full text
    This study identifies by microautoradiography activated microglia/macrophages as the main cell type expressing the peripheral benzodiazepine binding site (PBBS) at sites of active CNS pathology. Quantitative measurements of PBBS expression in vivo obtained by PET and [(11)C](R)-PK11195 are shown to correspond to animal experimental and human post-mortem data on the distribution pattern of activated microglia in inflammatory brain disease. Film autoradiography with [(3)H](R)-PK11195, a specific ligand for the PBBS, showed minimal binding in normal control CNS, whereas maximal binding to mononuclear cells was found in multiple sclerosis plaques. However, there was also significantly increased [(3)H](R)-PK11195 binding on activated microglia outside the histopathologically defined borders of multiple sclerosis plaques and in areas, such as the cerebral central grey matter, that are not normally reported as sites of pathology in multiple sclerosis. A similar pattern of [(3)H](R)-PK11195 binding in areas containing activated microglia was seen in the CNS of animals with experimental allergic encephalomyelitis (EAE). In areas without identifiable focal pathology, immunocytochemical staining combined with high-resolution emulsion autoradiography demonstrated that the cellular source of [(3)H](R)-PK11195 binding is activated microglia, which frequently retains a ramified morphology. Furthermore, in vitro radioligand binding studies confirmed that microglial activation leads to a rise in the number of PBBS and not a change in binding affinity. Quantitative [(11)C](R)-PK11195 PET in multiple sclerosis patients demonstrated increased PBBS expression in areas of focal pathology identified by T(1)- and T(2)-weighted MRI and, importantly, also in normal-appearing anatomical structures, including cerebral central grey matter. The additional binding frequently delineated neuronal projection areas, such as the lateral geniculate bodies in patients with a history of optic neuritis. In summary, [(11)C](R)-PK11195 PET provides a cellular marker of disease activity in vivo in the human brain
    corecore