19 research outputs found

    A New Heterobinuclear FeIIICuII Complex with a Single Terminal FeIII–O(phenolate) Bond. Relevance to Purple Acid Phosphatases and Nucleases

    Get PDF
    A novel heterobinuclear mixed valence complex [Fe^IIICu^II(BPBPMP)(OAc)_2]ClO_4, 1, with the unsymmetrical N_5O_2 donor ligand 2-bis[{(2-pyridylmethyl)aminomethyl}-6-{(2-hydroxybenzyl)(2-pyridylmethyl)} aminomethyl]-4-methylphenol (H_2BPBPMP) has been synthesized and characterized. A combination of data from mass spectrometry, potentiometric titrations, X-ray absorption and electron paramagnetic resonance spectroscopy, as well as kinetics measurements indicates that in ethanol/water solutions an [Fe^III-(nu)OH-Cu^IIOH_2]+ species is generated which is the likely catalyst for 2,4-bis(dinitrophenyl)phosphate and DNA hydrolysis. Insofar as the data are consistent with the presence of an Fe_III-bound hydroxide acting as a nucleophile during catalysis, 1 presents a suitable mimic for the hydrolytic enzyme purple acid phosphatase. Notably, 1 is significantly more reactive than its isostructural homologues with different metal composition (Fe^IIIM^II, where M^II is Zn^II, Mn^II, Ni^II,or Fe^II). Of particular interest is the observation that cleavage of double-stranded plasmid DNA occurs even at very low concentrations of 1 (2.5 nuM), under physiological conditions (optimum pH of 7.0), with a rate enhancement of 2.7 x 10^7 over the uncatalyzed reaction. Thus, 1 is one of the most effective model complexes to date, mimicking the function of nucleases

    How protein targeting to primary plastids via the endomembrane system could have evolved? A new hypothesis based on phylogenetic studies

    Full text link

    Prostatic acid phosphatase, a neglected ectonucleotidase

    No full text
    Two recent papers reveal that the soluble and secreted prostatic acid phosphatase, an enzyme that has long served as a diagnostic marker for prostate cancer, has a membrane-bound splice variant. This enzyme exhibits ecto-5′-nucleotidase activity, is widely distributed, and implicated in the formation of chronic pain. While prostatic acid phosphatase hydrolyzes phosphomonoesters other than 5′-nucleoside monophosphates these novel data suggest that, in addition to ecto-5′-nucleotidase and the alkaline phosphatases, prostatic acid phosphatase must be taken into account in future studies on extracellular adenosine production
    corecore