40 research outputs found

    Identification and Comparative Expression Analysis of Interleukin 2/15 Receptor ÎČ Chain in Chickens Infected with E. tenella

    Get PDF
    BACKGROUND: Interleukin (IL) 2 and IL15 receptor ÎČ chain (IL2/15RÎČ, CD122) play critical roles in signal transduction for the biological activities of IL2 and IL15. Increased knowledge of non-mammalian IL2/15RÎČ will enhance the understanding of IL2 and IL15 functions. METHODOLOGY/PRINCIPAL FINDINGS: [corrected] Chicken IL2/15RÎČ (chIL2/15RÎČ) cDNA was cloned using 5'/3'-RACE. The predicted protein sequence contained 576 amino acids and typical features of the type-I cytokine receptor family. COS-7 cells transfected with chIL2/15RÎČ produced proteins of approximately 75 and 62.5 kDa under normal and tunicamycin-treated conditions, respectively. The genomic structure of chIL2/15RÎČ was similar to its mammalian counterparts. chIL2/15RÎČ transcripts were detected in the lymphoblast cell line CU205 and in normal lymphoid organs and at moderate levels in bursa samples. Expression profiles of chIL2/15RÎČ and its related cytokines and receptors were examined in ConA-stimulated splenic lymphocytes and in ceca-tonsils of Eimeria tenella-infected chickens using quantitative real-time PCR. Expression levels of chIL2/15RÎČ, chIL2Rα, and chIL15Rα were generally elevated in ceca-tonsils and ConA-activated splenic lymphocytes. However, chIL2 and chIL15 expression levels were differentially regulated between the samples. chIL2 expression was upregulated in ConA-activated splenic lymphocytes, but not in ceca-tonsils. In constrast, chIL15 expression was upregulated in ceca-tonsils, but not in ConA-activated splenic lymphocytes. CONCLUSIONS/SIGNIFICANCE: We identified an avian form of IL2/15RÎČ and compared its gene expression pattern with those of chIL2, chIL15, chIL2Rα, and chIL15Rα. Our observations suggest that chIL15 and its receptors, including chIL2/15RÎČ, play important roles in mucosal immunity to intestinal intracellular parasites such as Eimeria

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    A preliminary study on surgical navigation for epiduroscopic laser neural decompression

    No full text
    Epiduroscopic laser neural decompression is an emerging therapeutic modality to treat lumbar spine pathologies including chronic low back pain, spinal stenosis, and disk herniation via catheter insertion followed by laser ablation of the lesion. Despite the efficacy of epiduroscopic laser neural decompression, excessive radiation doses due to fluoroscopy during epiduroscopic laser neural decompression have limited its widespread application. To address the issue, we propose a surgical navigation system to assist in epiduroscopic laser neural decompression procedures using radiation-free image guidance. An electromagnetic tracking system was used as the basic modality to track the internal location of the surgical instrument with respect to the patient body. Patient-to-image registration was carried out using the point-based registration method to determine the transformation between the coordinate system of the patient and that of the medical images. We applied the proposed system in epiduroscopic laser neural decompression procedures to assess its effectiveness, and the outcomes confirmed its clinical feasibility. To the best of our knowledge, this is a report on the first surgical navigation applied for epiduroscopic laser neural decompression procedure. © IMechE 2015.
    corecore