3 research outputs found

    ARPES: A probe of electronic correlations

    Full text link
    Angle-resolved photoemission spectroscopy (ARPES) is one of the most direct methods of studying the electronic structure of solids. By measuring the kinetic energy and angular distribution of the electrons photoemitted from a sample illuminated with sufficiently high-energy radiation, one can gain information on both the energy and momentum of the electrons propagating inside a material. This is of vital importance in elucidating the connection between electronic, magnetic, and chemical structure of solids, in particular for those complex systems which cannot be appropriately described within the independent-particle picture. Among the various classes of complex systems, of great interest are the transition metal oxides, which have been at the center stage in condensed matter physics for the last four decades. Following a general introduction to the topic, we will lay the theoretical basis needed to understand the pivotal role of ARPES in the study of such systems. After a brief overview on the state-of-the-art capabilities of the technique, we will review some of the most interesting and relevant case studies of the novel physics revealed by ARPES in 3d-, 4d- and 5d-based oxides.Comment: Chapter to appear in "Strongly Correlated Systems: Experimental Techniques", edited by A. Avella and F. Mancini, Springer Series in Solid-State Sciences (2013). A high-resolution version can be found at: http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Reviews/ARPES_Springer.pdf. arXiv admin note: text overlap with arXiv:cond-mat/0307085, arXiv:cond-mat/020850

    Orbital interactions and chemical reactivity of metal particles and metal surfaces

    Get PDF
    A review is presented with 101 refs. on chem. bonding to metal surfaces and small metal particles demonstrating the power of symmetry concepts to predict changes in chem. bonding. Ab-initio calcns. of chemisorption to small particles, as well as semiempirical extended Hueckel calcns. applied to the study of the reactivity of metal slabs are reviewed. On small metal particles, classical notions of electron promotion and hybridization are found to apply. The surroundings of a metal atom (ligands in complexes, other metal atoms at surfaces), affect bonding and reactivity through the prehybridization they induce. A factor specific for large particles and surfaces is the required localization of electrons on the atoms involved in the metal surface bond. At the surface, the bond energy is found to relate to the grou8p orbital local d. of states at the Fermi level. The use of this concept is extensively discussed and illustrated for chemisorption of CO and dissocn. of NO on metal surfaces. A discussion is given of the current decompn. schemes of bond energies and related concepts (exchange (Pauli)-repulsion, polarization, charge transfer). The role of non-orthogonality of fragment orbitals and of kinetic and potential energy for Pauli repulsion and (orbital) polarization is analyzed. Numerous examples are discussed to demonstrate the impact of those concepts on chem. bonding theor
    corecore