44 research outputs found

    Push-Pull Block Puzzles are Hard

    Full text link
    This paper proves that push-pull block puzzles in 3D are PSPACE-complete to solve, and push-pull block puzzles in 2D with thin walls are NP-hard to solve, settling an open question by Zubaran and Ritt. Push-pull block puzzles are a type of recreational motion planning problem, similar to Sokoban, that involve moving a `robot' on a square grid with 1×11 \times 1 obstacles. The obstacles cannot be traversed by the robot, but some can be pushed and pulled by the robot into adjacent squares. Thin walls prevent movement between two adjacent squares. This work follows in a long line of algorithms and complexity work on similar problems. The 2D push-pull block puzzle shows up in the video games Pukoban as well as The Legend of Zelda: A Link to the Past, giving another proof of hardness for the latter. This variant of block-pushing puzzles is of particular interest because of its connections to reversibility, since any action (e.g., push or pull) can be inverted by another valid action (e.g., pull or push).Comment: Full version of CIAC 2017 paper. 17 page

    LaserTank is NP-complete

    Full text link
    We show that the classical game LaserTank is NP\mathrm{NP}-complete, even when the tank movement is restricted to a single column and the only blocks appearing on the board are mirrors and solid blocks. We show this by reducing 33-SAT instances to LaserTank puzzles.Comment: 5 page

    Multi-agent Path Planning in Known Dynamic Environments

    Full text link
    We consider the problem of planning paths of multiple agents in a dynamic but predictable environment. Typical scenarios are evacuation, reconfiguration, and containment. We present a novel representation of abstract path-planning problems in which the stationary environment is explicitly coded as a graph (called the arena) while the dynamic environment is treated as just another agent. The complexity of planning using this representation is pspace-complete. The arena complexity (i.e., the complexity of the planning problem in which the graph is the only input, in particular, the number of agents is fixed) is np-hard. Thus, we provide structural restrictions that put the arena complexity of the planning problem into ptime(for any fixed number of agents). The importance of our work is that these structural conditions (and hence the complexity results) do not depend on graph-theoretic properties of the arena (such as clique- or tree-width), but rather on the abilities of the agents

    Determining and interpreting correlations in lipidomic networks found in glioblastoma cells

    Get PDF
    Background: Intelligent and multitiered quantitative analysis of biological systems rapidly evolves to a key technique in studying biomolecular cancer aspects. Newly emerging advances in both measurement as well as bio-inspired computational techniques have facilitated the development of lipidomics technologies and offer an excellent opportunity to understand regulation at the molecular level in many diseases. Results: We present computational approaches to study the response of glioblastoma U87 cells to gene- and chemo-therapy. To identify distinct biomarkers and differences in therapeutic outcomes, we develop a novel technique based on graph-clustering. This technique facilitates the exploration and visualization of co-regulations in glioblastoma lipid profiling data. We investigate the changes in the correlation networks for different therapies and study the success of novel gene therapies targeting aggressive glioblastoma. Conclusions: The novel computational paradigm provides unique “fingerprints” by revealing the intricate interactions at the lipidome level in glioblastoma U87 cells with induced apoptosis (programmed cell death) and thus opens a new window to biomedical frontiers. Background Glioblastoma are highly invasive brain tumors. Th

    Identification and Analysis of Co-Occurrence Networks with NetCutter

    Get PDF
    BACKGROUND: Co-occurrence analysis is a technique often applied in text mining, comparative genomics, and promoter analysis. The methodologies and statistical models used to evaluate the significance of association between co-occurring entities are quite diverse, however. METHODOLOGY/PRINCIPAL FINDINGS: We present a general framework for co-occurrence analysis based on a bipartite graph representation of the data, a novel co-occurrence statistic, and software performing co-occurrence analysis as well as generation and analysis of co-occurrence networks. We show that the overall stringency of co-occurrence analysis depends critically on the choice of the null-model used to evaluate the significance of co-occurrence and find that random sampling from a complete permutation set of the bipartite graph permits co-occurrence analysis with optimal stringency. We show that the Poisson-binomial distribution is the most natural co-occurrence probability distribution when vertex degrees of the bipartite graph are variable, which is usually the case. Calculation of Poisson-binomial P-values is difficult, however. Therefore, we propose a fast bi-binomial approximation for calculation of P-values and show that this statistic is superior to other measures of association such as the Jaccard coefficient and the uncertainty coefficient. Furthermore, co-occurrence analysis of more than two entities can be performed using the same statistical model, which leads to increased signal-to-noise ratios, robustness towards noise, and the identification of implicit relationships between co-occurring entities. Using NetCutter, we identify a novel protein biosynthesis related set of genes that are frequently coordinately deregulated in human cancer related gene expression studies. NetCutter is available at http://bio.ifom-ieo-campus.it/NetCutter/). CONCLUSION: Our approach can be applied to any set of categorical data where co-occurrence analysis might reveal functional relationships such as clinical parameters associated with cancer subtypes or SNPs associated with disease phenotypes. The stringency of our approach is expected to offer an advantage in a variety of applications

    Mining and state-space modeling and verification of sub-networks from large-scale biomolecular networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biomolecular networks dynamically respond to stimuli and implement cellular function. Understanding these dynamic changes is the key challenge for cell biologists. As biomolecular networks grow in size and complexity, the model of a biomolecular network must become more rigorous to keep track of all the components and their interactions. In general this presents the need for computer simulation to manipulate and understand the biomolecular network model.</p> <p>Results</p> <p>In this paper, we present a novel method to model the regulatory system which executes a cellular function and can be represented as a biomolecular network. Our method consists of two steps. First, a novel scale-free network clustering approach is applied to the large-scale biomolecular network to obtain various sub-networks. Second, a state-space model is generated for the sub-networks and simulated to predict their behavior in the cellular context. The modeling results represent <it>hypotheses </it>that are tested against high-throughput data sets (microarrays and/or genetic screens) for both the natural system and perturbations. Notably, the dynamic modeling component of this method depends on the automated network structure generation of the first component and the sub-network clustering, which are both essential to make the solution tractable.</p> <p>Conclusion</p> <p>Experimental results on time series gene expression data for the human cell cycle indicate our approach is promising for sub-network mining and simulation from large-scale biomolecular network.</p

    Search engine makes social calls

    No full text
    corecore