40 research outputs found

    Differential Virulence Gene Expression of Group A Streptococcus Serotype M3 in Response to Co-Culture with Moraxella catarrhalis

    Get PDF
    Streptococcus pyogenes (group A Streptococcus, GAS) and Moraxella catarrhalis are important colonizers and (opportunistic) pathogens of the human respiratory tract. However, current knowledge regarding colonization and pathogenic potential of these two pathogens is based on work involving single bacterial species, even though the interplay between respiratory bacterial species is increasingly important in niche occupation and the development of disease. Therefore, to further define and understand polymicrobial species interactions, we investigated whether gene expression (and hence virulence potential) of GAS would be affected upon co-culture with M. catarrhalis. For co-culture experiments, GAS and M. catarrhalis were cultured in Todd-Hewitt broth supplemented with 0.2% yeast extract (THY) at 37°C with 5% CO2aeration. Each strain was grown in triplicate so that triplicate experiments could be performed. Bacterial RNA was isolated, cDNA synthesized, and microarray transcriptome expression analysis performed. We observed significantly increased (≥4-fold) expression for genes playing a role in GAS virulence such as hyaluronan synthase (hasA), streptococcal mitogenic exotoxin Z (smeZ) and IgG endopeptidase (ideS). In contrast, significantly decreased (≥4-fold) expression was observed in genes involved in energy metabolism and in 12 conserved GAS two-component regulatory systems. This study provides the first evidence that M. catarrhalis increases GAS virulence gene expression during co-culture, and again shows the importance of polymicrobial infections in directing bacterial virulence

    Functional and structural neural network characterization of serotonin transporter knockout rats

    Get PDF
    Contains fulltext : 125449.pdf (publisher's version ) (Open Access)Brain serotonin homeostasis is crucially maintained by the serotonin transporter (5-HTT), and its down-regulation has been linked to increased vulnerability for anxiety- and depression-related behavior. Studies in 5-HTT knockout (5-HTT(-/-)) rodents have associated inherited reduced functional expression of 5-HTT with increased sensitivity to adverse as well as rewarding environmental stimuli, and in particular cocaine hyperresponsivity. 5-HTT down-regulation may affect normal neuronal wiring of implicated corticolimbic cerebral structures. To further our understanding of its contribution to potential alterations in basal functional and structural properties of neural network configurations, we applied resting-state functional MRI (fMRI), pharmacological MRI of cocaine-induced activation, and diffusion tensor imaging (DTI) in 5-HTT(-/-) rats and wild-type controls (5-HTT(+/+)). We found that baseline functional connectivity values and cocaine-induced neural activity within the corticolimbic network was not significantly altered in 5-HTT(-/-) versus 5-HTT(+/+) rats. Similarly, DTI revealed mostly intact white matter structural integrity, except for a reduced fractional anisotropy in the genu of the corpus callosum of 5-HTT(-/-) rats. At the macroscopic level, analyses of complex graphs constructed from either functional connectivity values or structural DTI-based tractography results revealed that key properties of brain network organization were essentially similar between 5-HTT(+/+) and 5-HTT(-/-) rats. The individual tests for differences between 5-HTT(+/+) and 5-HTT(-/-) rats were capable of detecting significant effects ranging from 5.8% (fractional anisotropy) to 26.1% (pharmacological MRI) and 29.3% (functional connectivity). Tentatively, lower fractional anisotropy in the genu of the corpus callosum could indicate a reduced capacity for information integration across hemispheres in 5-HTT(-/-) rats. Overall, the comparison of 5-HTT(-/-) and wild-type rats suggests mostly limited effects of 5-HTT genotype on MRI-based measures of brain morphology and function
    corecore