66 research outputs found

    Intestinal transplantation under tacrolimus monotherapy after perioperative lymphoid depletion with rabbit anti-thymocyte globulin (thymoglobulin®)

    Get PDF
    Modifications in the timing and dosage of immunosuppression can ameliorate the morbidity and mortality that has prevented widespread use of intestinal transplantation (ITx) in children. Thirty-six patients receiving ITx, aged 5 months to 20 years were given 2-3 mg(kg of rabbit anti-thymocyte globulin (rATG, thymoglobulin®) just before ITx, and 2-3 mg(kg post-operatively (total 5 mg(kg). Twice daily doses of tacrolimus (TAC) were begun enterally within 24 h after graft reperfusion with reduction of dose quantity or frequency after 3 months. Prednisone or other agents were given to treat breakthrough rejection. After 8-28 months follow-up (mean 15.8 ± 5.3), 1- and 2-year patient and graft survival is 100% and 94%, respectively. Despite a 44% incidence of acute rejection in the first month, 16 of the 34 (47%) survivors are on TAC (n = 14) or sirolimus (n = 2) monotherapy; 15 receive TAC plus low dose prednisone; one each receive TAC plus sirolimus, TAC plus azathioprine and TAC plus sirolimus and prednisone. There was a low incidence of immunosuppression-related complications. This strategy of immunosuppression minimized maintenance TAC exposure, facilitated the long-term control of rejection, decreased the incidence of opportunistic infections, and resulted in a high rate of patient and graft survival. Copyright © Blackwell Munksgaard 2005

    Impaired neutralising antibody formation and high transduction efficacy after isolated hepatic perfusion with adenoviral vectors

    Get PDF
    Local adenoviral gene transfer can be performed by means of isolated hepatic perfusion (IHP). This methodology is a very effective and safe way to deliver adenoviral vectors. We studied the immune response after IHP, A decreased neutralising antibody formation was observed, offering possibilities for further research in the field of gene therapy in isolated perfusion settings

    The nuclear receptors of Biomphalaria glabrata and Lottia gigantea: Implications for developing new model organisms

    Get PDF
    © 2015 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedNuclear receptors (NRs) are transcription regulators involved in an array of diverse physiological functions including key roles in endocrine and metabolic function. The aim of this study was to identify nuclear receptors in the fully sequenced genome of the gastropod snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare these to known vertebrate NRs, with a view to assessing the snail's potential as a invertebrate model organism for endocrine function, both as a prospective new test organism and to elucidate the fundamental genetic and mechanistic causes of disease. For comparative purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also investigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified from the B. glabrata and L. gigantea genomes respectively, based on the presence of a conserved DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript expression was confirmed and sequences were subjected to a comparative phylogenetic analysis, which demonstrated that these molluscs have representatives of all the major NR subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and invertebrates, however differences exist, most notably, the absence of receptors of Group 3C, which includes some of the vertebrate endocrine hormone targets. The mollusc genomes also contain NR homologues that are present in insects and nematodes but not in vertebrates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared receptors between humans and molluscs indicates the potential for molluscs as model organisms; however the absence of several steroid hormone receptors indicates snail endocrine systems are fundamentally different.The National Centre for the Replacement, Refinement and Reduction of Animals in Research, Grant Ref:G0900802 to CSJ, LRN, SJ & EJR [www.nc3rs.org.uk]
    corecore