59 research outputs found
Placebo-controlled randomized clinical trial of fish oil’s impact on fatigue, quality of life, and disease activity in Systemic Lupus Erythematosus
Feeding butter with elevated content of trans-10, cis-12 conjugated linoleic acid to obese-prone rats impairs glucose and insulin tolerance
The interstitium in cardiac repair: role of the immune-stromal cell interplay
Cardiac regeneration, that is, restoration of the original structure and function in a damaged heart, differs from tissue repair, in which collagen deposition and scar formation often lead to functional impairment. In both scenarios, the early-onset inflammatory response is essential to clear damaged cardiac cells and initiate organ repair, but the quality and extent of the immune response vary. Immune cells embedded in the damaged heart tissue sense and modulate inflammation through a dynamic interplay with stromal cells in the cardiac interstitium, which either leads to recapitulation of cardiac morphology by rebuilding functional scaffolds to support muscle regrowth in regenerative organisms or fails to resolve the inflammatory response and produces fibrotic scar tissue in adult mammals. Current investigation into the mechanistic basis of homeostasis and restoration of cardiac function has increasingly shifted focus away from stem cell-mediated cardiac repair towards a dynamic interplay of cells composing the less-studied interstitial compartment of the heart, offering unexpected insights into the immunoregulatory functions of cardiac interstitial components and the complex network of cell interactions that must be considered for clinical intervention in heart diseases
Specialized Pro-Resolving Mediators Directs Cardiac Healing and Repair with Activation of Inflammation and Resolution Program in Heart Failure
After myocardial infarction, splenic leukocytes direct biosynthesis of specialized pro-resolving mediators (SPMs) that are essential for the resolution of inflammation and tissue repair. In a laboratory environment, after coronary ligation of healthy risk free rodents (young adult mice) leukocytes biosynthesize SPMs with induced activity of lipoxygenases and cyclooxygenases, which facilitate cardiac repair. Activated monocytes/macrophages drive the biosynthesis of SPMs following experimental myocardial infarction in mice during the acute heart failure. In the presented review, we provided the recent updates on SPMs (resolvins, lipoxins and maresins) in cardiac repair that may serve as novel therapeutics for future heart failure therapy/management. We incorporated the underlying causes of non-resolving inflammation following cardiac injury if superimposed with obesity, hypertension, diabetes, disrupted circadian rhythm, co-medication (painkillers or oncological therapeutics), and/or aging that may delay or impair the biosynthesis of SPMs, intensifying pathological remodeling in heart failure
Conjugated Linoleic Acid Prevents Ovariectomy-Induced Bone Loss in Mice by Modulating Both Osteoclastogenesis and Osteoblastogenesis
Immunomodulation with eicosapentaenoic acid supports the treatment of autoimmune small-vessel vasculitis
Relationship between the Second to Fourth Finger Length Ratio and Calcaneus Quantitative Ultrasound
- …
