3,088 research outputs found
Finite Larmor radius effects on non-diffusive tracer transport in a zonal flow
Finite Larmor radius (FLR) effects on non-diffusive transport in a
prototypical zonal flow with drift waves are studied in the context of a
simplified chaotic transport model. The model consists of a superposition of
drift waves of the linearized Hasegawa-Mima equation and a zonal shear flow
perpendicular to the density gradient. High frequency FLR effects are
incorporated by gyroaveraging the ExB velocity. Transport in the direction of
the density gradient is negligible and we therefore focus on transport parallel
to the zonal flows. A prescribed asymmetry produces strongly asymmetric non-
Gaussian PDFs of particle displacements, with L\'evy flights in one direction
but not the other. For zero Larmor radius, a transition is observed in the
scaling of the second moment of particle displacements. However, FLR effects
seem to eliminate this transition. The PDFs of trapping and flight events show
clear evidence of algebraic scaling with decay exponents depending on the value
of the Larmor radii. The shape and spatio-temporal self-similar anomalous
scaling of the PDFs of particle displacements are reproduced accurately with a
neutral, asymmetric effective fractional diffusion model.Comment: 14 pages, 13 figures, submitted to Physics of Plasma
Dust Distribution in Gas Disks. A Model for the Ring Around HR 4796A
There have been several model analyses of the near and mid IR flux from the
circumstellar ring around HR4796A. In the vicinity of a young star, the
possibility that the dust ring is embedded within a residual protostellar gas
disk cannot be ruled out. In a gas-rich environment, larger sizes () are needed for the particles to survive the radiative blow out. The total
dust mass required to account for the IR flux is . The
combined influence of gas and stellar radiation may also account for the
observed sharp inner boundary and rapidly fading outer boundary of the ring.
The pressure gradient induced by a small (10%) amplitude variation in the
surface density distribution of a low-mass gaseous disk would be sufficient to
modify the rotation speed of the gas.Comment: proof read version, 26 pages, LaTex, 11 figures. To appear in The
Astronomical Journal June 200
Transport equation describing fractional LĂ©vy motion of suprathermal ions in TORPEX
Suprathermal ions, created by fusion reactions or by additional heating, will play an important role in burning plasmas such as the ones in ITER or DEMO. Basic plasma experiments, with easy access for diagnostics and well-controlled plasma scenarios, are particularly suitable to investigate the transport of suprathermal ions in plasma waves and turbulence. Experimental measurements and numerical simulations have revealed that the transport of fast ions in the presence of electrostatic turbulence in the basic plasma toroidal experiment TORPEX is generally non-classical. Namely, the mean-squared radial displacement of the ions does not scale linearly with time, but ăr2(t)ăâŒtÎł , with Îł ïżœ= 1 generally, Îł>1 corresponding to superdiffusion and Îł<1 to subdiffusion. A generalization of the classical model of diffusion, the so-called fractional L Ì evy motion, which encompasses power-law (L Ì evy) statistics for the displacements and correlated temporal increments, leads to non-classical dynamics such as that observed in the experiments. On a macroscopic scale, this results in fractional differential operators, which are used to model non-Gaussian, non-local anomalous transport in a growing number of applied fields, including plasma physics. In this paper, we show that asymmetric fractional L Ì evy motion can be described by a diffusion equation using spacefractional differential operator with skewness. Numerical simulations of tracers in TORPEX turbulence are performed. The time evolution of the radial particle position distribution is shown to be described by solutions of the fractional diffusion equation corresponding to asymmetric fractional L Ì evy motion in sub- and superdiffusive cases
The hybrid spectral problem and Robin boundary conditions
The hybrid spectral problem where the field satisfies Dirichlet conditions
(D) on part of the boundary of the relevant domain and Neumann (N) on the
remainder is discussed in simple terms. A conjecture for the C_1 coefficient is
presented and the conformal determinant on a 2-disc, where the D and N regions
are semi-circles, is derived. Comments on higher coefficients are made.
A hemisphere hybrid problem is introduced that involves Robin boundary
conditions and leads to logarithmic terms in the heat--kernel expansion which
are evaluated explicitly.Comment: 24 pages. Typos and a few factors corrected. Minor comments added.
Substantial Robin additions. Substantial revisio
Travelling waves for the Gross-Pitaevskii equation II
The purpose of this paper is to provide a rigorous mathematical proof of the
existence of travelling wave solutions to the Gross-Pitaevskii equation in
dimensions two and three. Our arguments, based on minimization under
constraints, yield a full branch of solutions, and extend earlier results,
where only a part of the branch was built. In dimension three, we also show
that there are no travelling wave solutions of small energy.Comment: Final version accepted for publication in Communications in
Mathematical Physics with a few minor corrections and added remark
Spin alignment of vector meson in e+e- annihilation at Z0 pole
We calculate the spin density matrix of the vector meson produced in e+e-
annihilation at Z^0 pole. We show that the data imply a significant
polarization for the antiquark which is created in the fragmentation process of
the polarized initial quark and combines with the fragmenting quark to form the
vector meson. The direction of polarization is opposite to that of the
fragmenting quark and the magnitude is of the order of 0.5. A qualitative
explanation of this result based on the LUND string fragmentation model is
given.Comment: 15 pages, 2 fgiures; submitted to Phys. Rev.
Vibrotactile pedals : provision of haptic feedback to support economical driving
The use of haptic feedback is currently an underused modality in the driving environment, especially with respect to vehicle manufacturers. This exploratory study evaluates the effects of a vibrotactile (or haptic) accelerator pedal on car driving performance and perceived workload using a driving simulator. A stimulus was triggered when the driver exceeded a 50% throttle threshold, past which is deemed excessive for economical driving. Results showed significant decreases in mean acceleration values, and maximum and excess throttle use when the haptic pedal was active as compared to a baseline condition. As well as the positive changes to driver behaviour, subjective workload decreased when driving with the haptic pedal as compared to when drivers were simply asked to drive economically. The literature suggests that the haptic processing channel offers a largely untapped resource in the driving environment, and could provide information without overloading the other attentional resource pools used in driving
The multi-scale aerosol-climate model PNNL-MMF: model description and evaluation
Anthropogenic aerosol effects on climate produce one of the largest uncertainties in estimates of radiative forcing of past and future climate change. Much of this uncertainty arises from the multi-scale nature of the interactions between aerosols, clouds and large-scale dynamics, which are difficult to represent in conventional general circulation models (GCMs). In this study, we develop a multi-scale aerosol-climate model that treats aerosols and clouds across different scales, and evaluate the model performance, with a focus on aerosol treatment. This new model is an extension of a multi-scale modeling framework (MMF) model that embeds a cloud-resolving model (CRM) within each grid column of a GCM. In this extension, the effects of clouds on aerosols are treated by using an explicit-cloud parameterized-pollutant (ECPP) approach that links aerosol and chemical processes on the large-scale grid with statistics of cloud properties and processes resolved by the CRM. A two-moment cloud microphysics scheme replaces the simple bulk microphysics scheme in the CRM, and a modal aerosol treatment is included in the GCM. With these extensions, this multi-scale aerosol-climate model allows the explicit simulation of aerosol and chemical processes in both stratiform and convective clouds on a global scale. <br><br> Simulated aerosol budgets in this new model are in the ranges of other model studies. Simulated gas and aerosol concentrations are in reasonable agreement with observations (within a factor of 2 in most cases), although the model underestimates black carbon concentrations at the surface by a factor of 2â4. Simulated aerosol size distributions are in reasonable agreement with observations in the marine boundary layer and in the free troposphere, while the model underestimates the accumulation mode number concentrations near the surface, and overestimates the accumulation mode number concentrations in the middle and upper free troposphere by a factor of about 2. The overestimation of accumulation model number concentrations in the middle and upper free troposphere is consistent with large aerosol mass fraction above 5 km in the MMF model compared with other models. Simulated cloud condensation nuclei (CCN) concentrations are within the observational variations. Simulated aerosol optical depths (AOD) are in reasonable agreement with observations (within a factor of 2), and the spatial distribution of AOD is consistent with observations, while the model underestimates AOD over regions with strong fossil fuel and biomass burning emissions. Overall, this multi-scale aerosol-climate model simulates aerosol fields as well as conventional aerosol models
Effect of Silicon Content on Carbide Precipitation and Low-Temperature Toughness of Pressure Vessel Steels
Cr â Mn â Mo â Ni pressure vessel steels containing 0.54 and 1.55% Si are studied. Metallographic and fractographic analyses of the steels after tempering at 650 and 700°C are performed. The impact toughness at â 30°C and the hardness of the steels are determined. The mass fraction of the carbide phase in the steels is computed with the help of the J-MatPro 4.0 software
- âŠ