58,909 research outputs found
Weighted Density Approximation Description of Insulating YH and LaH
Density functional calculations within the weighted density approximation
(WDA) are presented for YH and LaH. We investigate some commonly used
pair-distribution functions G. These calculations show that within a consistent
density functional framework a substantial insulating gap can be obtained while
at the same time retaining structural properties in accord with experimental
data. Our WDA band structures agree with those of approximation very well,
but the calculated band gaps are still 1.0-2.0 eV smaller than experimental
findings.Comment: 6 Pages, 3 figure
Atypical presentation of visceral leishmaniasis from non-endemic region
A case of atypical and acute presentation of visceral leishmaniasis from non-endemic region, characterised by exudative pleural effusion and hepatitis is reporte
Shell closure effects studied via cluster decay in heavy nuclei
The effects of shell closure in nuclei via the cluster decay is studied. In
this context, we have made use of the Preformed Cluster Model () of Gupta
and collaborators based on the Quantum Mechanical Fragmentation Theory. The key
point in the cluster radioactivity is that it involves the interplay of close
shell effects of parent and daughter. Small half life for a parent indicates
shell stabilized daughter and long half life indicates the stability of the
parent against the decay. In the cluster decay of trans lead nuclei observed so
far, the end product is doubly magic lead or its neighbors. With this in our
mind we have extended the idea of cluster radioactivity. We investigated decay
of different nuclei where Zirconium is always taken as a daughter nucleus,
which is very well known deformed nucleus. The branching ratio of cluster decay
and -decay is also studied for various nuclei, leading to magic or
almost doubly magic daughter nuclei. The calculated cluster decay half-life are
in well agreement with the observed data. First time a possibility of cluster
decay in nucleus is predicted
Cohesion of BaReH and BaMnH: Density Functional Calculations and Prediction of (MnH Salts
Density functional calculations are used to calculate the structural and
electronic properties of BaReH and to analyze the bonding in this compound.
The high coordination in BaReH is due to bonding between Re 5 states and
states of -like symmetry formed from combinations of H orbitals in the
H cage. This explains the structure of the material, its short bond lengths
and other physical properties, such as the high band gap. We compare with
results for hypothetical BaMnH, which we find to have similar bonding and
cohesion to the Re compound. This suggests that it may be possible to
synthesize (MnH salts. Depending on the particular cation, such salts
may have exceptionally high hydrogen contents, in excess of 10 weight
Pulsed radiolysis of model aromatic polymers and epoxy based matrix materials
Models of primary processes leading to deactivation of energy deposited by a pulse of high energy electrons were derived for epoxy matrix materials and polyl-vinyl naphthalene. The basic conclusion is that recombination of initially formed charged states is complete within 1 nanosecond, and subsequent degradation chemistry is controlled by the reactivity of these excited states. Excited states in both systems form complexes with ground state molecules. These excimers or exciplexes have their characteristics emissive and absorptive properties and may decay to form separated pairs of ground state molecules, cross over to the triplet manifold or emit fluorescence. ESR studies and chemical analyses subsequent to pulse radiolysis were performed in order to estimate bond cleavage probabilities and net reaction rates. The energy deactivation models which were proposed to interpret these data have led to the development of radiation stabilization criteria for these systems
- …