170 research outputs found

    SYNTHESIS OF PROPYLENE CARBONATE FROM UREA AND 1,2-PROPYLENE GLYCOL OVER METAL CARBONATES

    Get PDF
    A series of single-metal carbonates and Pb-Zn mixed-metal carbonates were prepared as catalysts for alcoholysis of urea with 1,2-propylene glycol (PG) for the synthesis of propylene carbonate (PC). The mixed carbonates all show much better catalytic activities than the single carbonates, arising from a strong synergistic effect between the two crystalline phases, hydrozincite and lead carbonate. The mixed carbonate with Pb/Zn = 1:2 gives the highest yield of PC, followed by the mixed carbonate with Pb/Zn = 1:3. Furthermore, Taguchi method was used to optimize the synthetic process for improving the yield of PC. It is shown that the reaction temperature is the most significant factor affecting the yield of PC, followed by the reaction time, and that the optimal reaction conditions are the reaction time 5 h, the reaction temperature 180 °C and the catalyst amount 1.8 mass%, resulting in the highest PC yield of 96.3%

    Effect of the Citrus Lycopene β-Cyclase Transgene on Carotenoid Metabolism in Transgenic Tomato Fruits

    Get PDF
    Lycopene β-cyclase (LYCB) is the key enzyme for the synthesis of β-carotene, a valuable component of the human diet. In this study, tomato constitutively express Lycb-1 was engineered. The β-carotene level of transformant increased 4.1 fold, and the total carotenoid content increased by 30% in the fruits. In the transgenic line, the downstream α-branch metabolic fluxes were repressed during the three developmental stages while α-carotene content increased in the ripe stage. Microarray analysis in the ripe stage revealed that the constitutive expression of Lycb-1 affected a number of pathways including the synthesis of fatty acids, flavonoids and phenylpropanoids, the degradation of limonene and pinene, starch and sucrose metabolism and photosynthesis. This study provided insight into the regulatory effect of Lycb-1 gene on plant carotenoid metabolism and fruit transcriptome

    Revealing two radio active galactic nuclei extremely near PSR J0437-4715

    Full text link
    Newton's gravitational constant GG may vary with time at an extremely low level. The time variability of GG will affect the orbital motion of a millisecond pulsar in a binary system and cause a tiny difference between the orbital period-dependent measurement of the kinematic distance and the direct measurement of the annual parallax distance. PSR J0437-4715 is the nearest millisecond pulsar and the brightest at radio. To explore the feasibility of achieving a parallax distance accuracy of one light-year, comparable to the recent timing result, with the technique of differential astrometry, we searched for compact radio sources quite close to PSR J0437-4715. Using existing data from the Very Large Array and the Australia Telescope Compact Array, we detected two sources with flat spectra, relatively stable flux densities of 0.9 and 1.0 mJy at 8.4 GHz and separations of 13 and 45 arcsec. With a network consisting of the Long Baseline Array and the Kunming 40-m radio telescope, we found that both sources have a point-like structure and a brightness temperature of \geq107^7 K. According to these radio inputs and the absence of counterparts in the other bands, we argue that they are most likely the compact radio cores of extragalactic active galactic nuclei rather than Galactic radio stars. The finding of these two radio active galactic nuclei will enable us to achieve a sub-pc distance accuracy with the in-beam phase-referencing very-long-baseline interferometric observations and provide one of the most stringent constraints on the time variability of GG in the near future.Comment: 9 pages, 3 tables, 3 figures. Accepted for publication in MNRA

    The Cassiopeia Filament: A Blown Spur of the Local Arm

    Full text link
    We present wide-field and high-sensitivity CO(1-0) molecular line observations toward the Cassiopeia region, using the 13.7m millimeter telescope of the Purple Mountain Observatory (PMO). The CO observations reveal a large-scale highly filamentary molecular cloud within the Galactic region of 132\fdg0\,\geq\,ll\,\geq\,122\fdg0 and -1\fdg0\,\leq\,bb\,\leq\,3\fdg0 and the velocity range from approximately +1 to +4 km/s. The measured length of the large-scale filament, referred to as the Cassiopeia Filament, is about 390 pc. The observed properties of the Cassiopeia Filament, such as length, column density, and velocity gradient, are consistent with those synthetic large-scale filaments in the inter-arm regions. Based on its observed properties and location on the Galactic plane, we suggest that the Cassiopeia Filament is a spur of the Local arm, which is formed due to the galactic shear. The western end of the Cassiopeia Filament shows a giant arc-like molecular gas shell, which is extending in the velocity range from roughly -1 to +7 km/s. Finger-like structures, with systematic velocity gradients, are detected in the shell. The CO kinematics suggest that the large shell is expanding at a velocity of ~6.5 km/s. Both the shell and finger-like structures outline a giant bubble with a radius of ~16 pc, which is likely produced by stellar wind from the progenitor star of a supernova remnant. The observed spectral linewidths suggest that the whole Cassiopeia Filament was quiescent initially until its west part was blown by stellar wind and became supersonically turbulent.Comment: 46 pages, 19 figures, to be published by the A
    corecore