15 research outputs found

    Virus-virus interactions impact the population dynamics of influenza and the common cold

    Get PDF
    The human respiratory tract hosts a diverse community of cocirculating viruses that are responsible for acute respiratory infections. This shared niche provides the opportunity for virus–virus interactions which have the potential to affect individual infection risks and in turn influence dynamics of infection at population scales. However, quantitative evidence for interactions has lacked suitable data and appropriate analytical tools. Here, we expose and quantify interactions among respiratory viruses using bespoke analyses of infection time series at the population scale and coinfections at the individual host scale. We analyzed diagnostic data from 44,230 cases of respiratory illness that were tested for 11 taxonomically broad groups of respiratory viruses over 9 y. Key to our analyses was accounting for alternative drivers of correlated infection frequency, such as age and seasonal dependencies in infection risk, allowing us to obtain strong support for the existence of negative interactions between influenza and noninfluenza viruses and positive interactions among noninfluenza viruses. In mathematical simulations that mimic 2-pathogen dynamics, we show that transient immune-mediated interference can cause a relatively ubiquitous common cold-like virus to diminish during peak activity of a seasonal virus, supporting the potential role of innate immunity in driving the asynchronous circulation of influenza A and rhinovirus. These findings have important implications for understanding the linked epidemiological dynamics of viral respiratory infections, an important step towards improved accuracy of disease forecasting models and evaluation of disease control interventions

    Hepatitis E virus infection presenting with paraesthesia

    No full text
    Hepatitis E virus infection is an emerging disease in developed countries. Acute and chronic infection has been reported, with chronic infection being increasingly reported in immunocompromised patients. Neurological disorders are an emerging manifestation of both acute and chronic hepatitis E virus infection. We report a 77-year-old female presented with paraesthesia and was found to have abnormal liver function tests. Serology was found to be positive for hepatitis E virus IgM, IgG and RNA. Liver function tests normalised after three weeks and her neurological symptoms completely resolved. To our knowledge, this is the first case in Scotland of hepatitis E virus presenting only with neurological symptoms

    The development of a multiplex real-time PCR for the detection of herpes simplex virus 1 and 2, varizella zoster virus, adenovirus and Chlamydia trachomatis from eye swabs

    No full text
    Infectious conjunctivitis can be difficult to distinguish clinically due to the considerable overlap in clinical presentation so clinical diagnosis of conjunctivitis is often insufficient. It is therefore necessary to have a rapid diagnostic test that differentiates between the different causes of infectious conjunctivitis. Screening clinical samples by sample type/syndrome based multiplex real time PCR would allow for rapid detection of a variety of pathogens simultaneously, which will in turn aid in the treatment and clinical management of the patient. A multiplex real-time PCR assay for rapid and simultaneous detection of HSV 1 and 2, VZV, adenovirus and Chlamydia trachomatis (C.trachomatis) from eye swabs was developed and evaluated. The multiplex assay was shown to be sensitive, specific and robust. Reductions in sample turn around times have been achieved by reducing the amount of separate tests needed to be carried out

    Detection of hepatitis C virus RNA in dried blood spots

    No full text
    An estimated 130-170 million people worldwide are chronically infected with HCV.(1) In Europe the highest prevalence of HCV infections is in the IDU population.(2) As traditional HCV screening relies on the detection of HCV antibody or HCV RNA in blood, screening in high-risk groups such as IDU is difficult due to poor venous access caused by damaged veins. In this study DBS was evaluated as an alternative sample type to blood for the detection of HCV RNA. The endpoint detection limit, inter-assay and intra-assay variability of the method were determined. The DBS method was compared to our routine frontline assay using a panel of paired DBS and blood samples. The effect of different storage temperatures and length of storage time on the stability of HCV RNA in DBS was also assessed. The endpoint detection limit of the method based on results from mock DBS was 250 IU/ml. The method was shown to be precise and robust. The sensitivity and specificity of the method was found to be 100% and 95.8%, respectively. No significant variation in the stability of HCV RNA in DBS over a 1 year period at a range of different temperatures was observed. A sensitive and stable method was developed for the detection of HCV RNA in DBS. Screening high-risk populations using DBS as a sample type may improve uptake of HCV testing by increasing opportunity for patients to be tested and consequently increasing access to treatment
    corecore