8 research outputs found

    Pre-germination treatments of melon seeds for the production of seedlings irrigated with biosaline water.

    Get PDF
    Melon (Cucumis melo L.) has an estimated world production of 31 million tons and a cultivated area of approximately 1.3 million hectares (FAO, 2018). In Brazil, the states of Bahia, Ceará and Rio Grande do Norte are the main producers, with 80% of the cultivated area of the latter two destined for export (Kist et al., 2021). These producing states are located in the semi-arid region, whose crops are under high water demand due to the high temperatures and evapotranspiration rates, climatic characteristics that are inherent to this region (Bezerra et al., 2020). Abstract Melon production in the Brazilian semi-arid region is subject to the use of marginal waters with high salinity. However, the use of regulators and bioactivators in seed treatment can mitigate the harmful effects of salts in irrigation water. In this context, the objective was to evaluate the effect of pre-germination treatments with plant regulators and bioactivator in melon seeds for the production of seedlings irrigated with biosaline water from fish farming effluent. For this, two trials with the Goldex and Grand Prix hybrids were carried out separately. A completely randomized design was used in a 4 × 3 factorial scheme (pre-germination treatments × water dilutions). In addition to the control, the seeds were treated with salicylic and gibberellic acids and thiamethoxam. The waters used for irrigation were local-supply water, fish farming effluent (biosaline water) and these diluted to 50%. Physiological and biochemical analyses were performed for fourteen days. Biosaline water (5.0 dS m-1) did not affect the emergence of Goldex melon seedlings, but compromised the establishment of the Grand Prix cultivar. Seed pre-treatments with salicylic and gibberellic acids attenuate the effects of water salinity and promote growth modulations, resulting in more vigorous melon seedlings

    Caracterization of seed germination of Zephyranthes sylvatica (Mart.) Baker (Amarilidacea).

    Get PDF
    Zephyranthes sylvatica is a beautiful lily, endemic from the Brazilian Caatinga. Although it has a great ornamental potential, little is known about this species, especially regarding its seeds germination process. Aiming to characterize the germination of Z. sylvatica seeds, we studied its imbibition curve, optimum temperature and substrate for germination and seedling emergence, osmotic and salt stress tolerance, as well as the tolerance to frosting/ defrosting, which indicates long term cryostorage potential. The germination of Z. sylvatica presents a triphasic model of imbibition, in which the primary root protrusion occurs after 72 hours of imbibition. The ideal conditions for evaluating seed germination of Z. sylvatica is 25 °C, in paper rolls. These seeds are highly tolerant to osmotic stress, but not to salt stress. Z. sylvatica seeds can be cryopreservated without loss of germination and seed vigor

    Germinação de sementes de tomateiro tratadas com fontes de ferro e zinco para biofortificação agronômica.

    Get PDF
    O presente trabalho tem por objetivo avaliar a germinação de sementes e desenvolvimento de plântulas de tomate submetidas ao tratamento com ferro e zinco, visando a biofortificação agronômica.201

    Development of seedlings of watermelon cv. Crimson Sweet irrigated with biosaline water.

    Get PDF
    ABSTRACTThe limited access and the scarcity of good quality water for agriculture are some of the major problems faced in agricultural areas, particularly in arid and semiarid regions. The aim of this study was to evaluate the quality of watermelon seedlings (cv. Crimson Sweet), irrigated with different concentrations of biosaline water of fish culture. The experimental design was completely randomized with five treatments, corresponding to biosaline water at different concentrations (0, 33, 50, 67 and 100%), and four replicates of 108 seedlings. Watermelon seeds were sown in plastic trays filled with commercial substrate and irrigated with different solutions of biosaline water. Seedlings were harvested for biometric analysis at 14, 21 and 28 days after sowing. The use of biosaline water did not affect emergence and establishment of seedlings until 14 days after sowing, the period recommended for transplantation. However, the use of biosaline water affected the development of seedlings with longer exposure time
    corecore