7,438 research outputs found
Graphene-based spin-pumping transistor
We demonstrate with a fully quantum-mechanical approach that graphene can
function as gate-controllable transistors for pumped spin currents, i.e., a
stream of angular momentum induced by the precession of adjacent
magnetizations, which exists in the absence of net charge currents.
Furthermore, we propose as a proof of concept how these spin currents can be
modulated by an electrostatic gate. Because our proposal involves nano-sized
systems that function with very high speeds and in the absence of any applied
bias, it is potentially useful for the development of transistors capable of
combining large processing speeds, enhanced integration and extremely low power
consumption
Graphene as a non-magnetic spin-current lens
In spintronics, the ability to transport magnetic information often depends
on the existence of a spin current traveling between two different magnetic
objects acting as source and probe. A large fraction of this information never
reaches the probe and is lost because the spin current tends to travel
omni-directionally. We propose that a curved boundary between a gated and a
non-gated region within graphene acts as an ideal lens for spin currents
despite being entirely of non-magnetic nature. We show as a proof of concept
that such lenses can be utilized to redirect the spin current that travels away
from a source onto a focus region where a magnetic probe is located, saving a
considerable fraction of the magnetic information that would be otherwise lost.Comment: 9 pages, 3 figure
Damped and sub-damped Lyman-α absorbers in z > 4 QSOs
We present the results of a survey of damped (DLA, log N(H I) > 20.3) and sub-damped Lyman-α systems (19.5 2.55 along the lines-of-sight to 77 quasars with emission redshifts in the range 4 19.5 were detected of which 40 systems are damped Lyman-α systems for an absorption length of ΔX = 378. About half of the lines of sight of this homogeneous survey have never been investigated for DLAs. We study the evolution with redshift of the cosmological density of the neutral gas and find, consistent with previous studies at similar resolution, that Ω_(DLA,HI) decreases at z > 3.5. The overall cosmological evolution of Ω_(HI) shows a peak around this redshift. The H I column density distribution for log N(H I) ≥ 20.3 is fitted, consistent with previous surveys, with a single power-law of index α ~ −1.8 ± 0.25. This power-law overpredicts data at the high-end and a second, much steeper, power-law (or a gamma function) is needed. There is a flattening of the function at lower H I column densities with an index of α ~ −1.4 for the column density range log N(H I) = 19.5−21. The fraction of H I mass in sub-DLAs is of the order of 30%. The H I column density distribution does not evolve strongly from z ~ 2.5 to z ~ 4.5
Dynamic RKKY interaction between magnetic moments in graphene nanoribbons
Graphene has been identified as a promising material with numerous
applications, particularly in spintronics. In this paper we investigate the
peculiar features of spin excitations of magnetic units deposited on graphene
nanoribbons and how they can couple through a dynamical interaction mediated by
spin currents. We examine in detail the spin lifetimes and identify a pattern
caused by vanishing density of states sites in pristine ribbons with armchair
borders. Impurities located on these sites become practically invisible to the
interaction, but can be made accessible by a gate voltage or doping. We also
demonstrate that the coupling between impurities can be turned on or off using
this characteristic, which may be used to control the transfer of information
in transistor-like devices.Comment: 10 pages, 10 figure
Operator Product on Locally Symmetric Spaces of Rank One and the Multiplicative Anomaly
The global multiplicative properties of Laplace type operators acting on
irreducible rank one symmetric spaces are considered. The explicit form of the
multiplicative anomaly is derived and its corresponding value is calculated
exactly, for important classes of locally symmetric spaces and different
dimensions.Comment: Int. Journal of Modern Physics A, vol. 18 (2003), 2179-218
- …