5,116 research outputs found

    Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride

    Get PDF
    We present a fast method to fabricate high quality heterostructure devices by picking up crystals of arbitrary sizes. Bilayer graphene is encapsulated with hexagonal boron nitride to demonstrate this approach, showing good electronic quality with mobilities ranging from 17 000 cm^2/V/s at room temperature to 49 000 cm^2/V/s at 4.2 K, and entering the quantum Hall regime below 0.5 T. This method provides a strong and useful tool for the fabrication of future high quality layered crystal devices.Comment: 5 pages, 3 figure

    Dynamic RKKY interaction between magnetic moments in graphene nanoribbons

    Get PDF
    Graphene has been identified as a promising material with numerous applications, particularly in spintronics. In this paper we investigate the peculiar features of spin excitations of magnetic units deposited on graphene nanoribbons and how they can couple through a dynamical interaction mediated by spin currents. We examine in detail the spin lifetimes and identify a pattern caused by vanishing density of states sites in pristine ribbons with armchair borders. Impurities located on these sites become practically invisible to the interaction, but can be made accessible by a gate voltage or doping. We also demonstrate that the coupling between impurities can be turned on or off using this characteristic, which may be used to control the transfer of information in transistor-like devices.Comment: 10 pages, 10 figure

    Controlling spin relaxation in hexagonal BN-encapsulated graphene with a transverse electric field

    Full text link
    We experimentally study the electronic spin transport in hBN encapsulated single layer graphene nonlocal spin valves. The use of top and bottom gates allows us to control the carrier density and the electric field independently. The spin relaxation times in our devices range up to 2 ns with spin relaxation lengths exceeding 12 μ\mum even at room temperature. We obtain that the ratio of the spin relaxation time for spins pointing out-of-plane to spins in-plane is τ⊥/τ∣∣≈\tau_{\bot} / \tau_{||} \approx 0.75 for zero applied perpendicular electric field. By tuning the electric field this anisotropy changes to ≈\approx0.65 at 0.7 V/nm, in agreement with an electric field tunable in-plane Rashba spin-orbit coupling

    Carbon nanotube: a low-loss spin-current waveguide

    Full text link
    We demonstrate with a quantum-mechanical approach that carbon nanotubes are excellent spin-current waveguides and are able to carry information stored in a precessing magnetic moment for long distances with very little dispersion and with tunable degrees of attenuation. Pulsed magnetic excitations are predicted to travel with the nanotube Fermi velocity and are able to induce similar excitations in remote locations. Such an efficient way of transporting magnetic information suggests that nanotubes are promising candidates for memory devices with fast magnetization switchings

    Massive scalar field near a cosmic string

    Full text link
    The ζ\zeta function of a massive scalar field near a cosmic string is computed and then employed to find the vacuum fluctuation of the field. The vacuum expectation value of the energy-momentum tensor is also computed using a point-splitting approach. The obtained results could be useful also for the case of self-interacting scalar fields and for the finite-temperature Rindler space theory.Comment: 15 pages, standard LaTeX, no figures. Reference [14] correcte

    Experimental observation of quantum entanglement in low dimensional spin systems

    Full text link
    We report macroscopic magnetic measurements carried out in order to detect and characterize field-induced quantum entanglement in low dimensional spin systems. We analyze the pyroborate MgMnB_2O_5 and the and the warwickite MgTiOBO_3, systems with spin 5/2 and 1/2 respectively. By using the magnetic susceptibility as an entanglement witness we are able to quantify entanglement as a function of temperature and magnetic field. In addition, we experimentally distinguish for the first time a random singlet phase from a Griffiths phase. This analysis opens the possibility of a more detailed characterization of low dimensional materials

    Vacuum Polarization at Finite Temperature around a Magnetic Flux Cosmic String

    Get PDF
    We consider a general situation where a charged massive scalar field Ï•(x)\phi(x) at finite temperature interacts with a magnetic flux cosmic string. We determine a general expression for the Euclidean thermal Green's function of the massive scalar field and a handy expression for a massless scalar field. With this result, we evaluate the thermal average and the thermal average of the energy-momentum tensor of a nonconformal massless scalar field.Comment: 22 pages, latex, no figure

    Vacuum Polarization in the Spacetime of a Scalar-Tensor Cosmic String

    Get PDF
    We study the vacuum polarization effect in the spacetime generated by a magnetic flux cosmic string in the framework of a scalar-tensor gravity. The vacuum expectation values of the energy-momentum tensor of a conformally coupled scalar field are calculated. The dilaton's contribution to the vacuum polarization effect is shown explicitly.Comment: 11 pages, LATEX file, 2 eps figure
    • …
    corecore