4,524 research outputs found

    Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride

    Get PDF
    We present a fast method to fabricate high quality heterostructure devices by picking up crystals of arbitrary sizes. Bilayer graphene is encapsulated with hexagonal boron nitride to demonstrate this approach, showing good electronic quality with mobilities ranging from 17 000 cm^2/V/s at room temperature to 49 000 cm^2/V/s at 4.2 K, and entering the quantum Hall regime below 0.5 T. This method provides a strong and useful tool for the fabrication of future high quality layered crystal devices.Comment: 5 pages, 3 figure

    Caprinocultura e ovinocultura: crescimento promissor x desorganização preocupante.

    Get PDF
    bitstream/item/52348/1/Midia-Caprinocultura-e-ovinocultura.pd

    Controlling spin relaxation in hexagonal BN-encapsulated graphene with a transverse electric field

    Full text link
    We experimentally study the electronic spin transport in hBN encapsulated single layer graphene nonlocal spin valves. The use of top and bottom gates allows us to control the carrier density and the electric field independently. The spin relaxation times in our devices range up to 2 ns with spin relaxation lengths exceeding 12 μ\mum even at room temperature. We obtain that the ratio of the spin relaxation time for spins pointing out-of-plane to spins in-plane is τ⊥/τ∣∣≈\tau_{\bot} / \tau_{||} \approx 0.75 for zero applied perpendicular electric field. By tuning the electric field this anisotropy changes to ≈\approx0.65 at 0.7 V/nm, in agreement with an electric field tunable in-plane Rashba spin-orbit coupling

    Group theory analysis of electrons and phonons in N-layer graphene systems

    Full text link
    In this work we study the symmetry properties of electrons and phonons in graphene systems as function of the number of layers. We derive the selection rules for the electron-radiation and for the electron-phonon interactions at all points in the Brillouin zone. By considering these selection rules, we address the double resonance Raman scattering process. The monolayer and bilayer graphene in the presence of an applied electric field are also discussed.Comment: 8 pages, 6 figure

    Visual Binaries in the Orion Nebula Cluster

    Full text link
    We have carried out a major survey for visual binaries towards the Orion Nebula Cluster using HST images obtained with an H-alpha filter. Among 781 likely ONC members more than 60" from theta-1 Ori C, we find 78 multiple systems (75 binaries and 3 triples), of which 55 are new discoveries, in the range from 0.1" to 1.5". About 9 binaries are likely line-of-sight associations. We find a binary fraction of 8.8%+-1.1% within the limited separation range from 67.5 to 675 AU. The field binary fraction in the same range is a factor 1.5 higher. Within the range 150 AU to 675 AU we find that T Tauri associations have a factor 2.2 more binaries than the ONC. The binary separation distribution function of the ONC shows unusual structure, with a sudden steep decrease in the number of binaries as the separation increases beyond 0.5", corresponding to 225 AU. We have measured the ratio of binaries wider than 0.5" to binaries closer than 0.5" as a function of distance from the Trapezium, and find that this ratio is significantly depressed in the inner region of the ONC. The deficit of wide binaries in the central part of the cluster is likely due to dissolution or orbital change during their passage through the potential well of the inner cluster region. Many of the companions are likely to be brown dwarfs.Comment: 27 pages, 10 figures, 2 tables, accepted by the Astronomical Journa

    Relativistic Hartree-Bogoliubov Approach for Nuclear Matter with Non-Linear Coupling Terms

    Get PDF
    We investigate the pairing property of nuclear matter with Relativistic Hartree-Bogoliubov(RHB) approach. Recently, the RHB approach has been widely applied to nuclear matter and finite nuclei. We have extended the RHB approach to be able to include non-linear coupling terms of mesons. In this paper we apply it to nuclear matter and observe the effect of non-linear terms on pairing gaps.Comment: 13 pages, 5 figure

    Adaptabilidade e estabilidade de cultivares de milho no Meio-Norte brasileiro, na safra 2007/2008.

    Get PDF
    Durante a safra de 2007/2008, no Meio-Norte brasileiro, foram executados ensaios de milho em blocos casualizados com três repetições para a avaliação de 42 cultivares de milho (16 variedades e 26 híbridos), objetivando conhecer a adaptabilidade e a estabilidade desses materiais para fins de recomendação. Detectaram-se, nas análises de variância conjuntas, diferenças entre as cultivares e inconsistência no comportamento nos diferentes ambientes, no que se refere à produtividade de grãos. Os híbridos apresentaram, em média, produtividade de grãos (7.382 kg ha-1) 19,0 % maior que as variedades. Entre os híbridos de melhor adaptação, os que evidenciaram adaptabilidade ampla consolidaram-se como alternativas importantes para a agricultura regional, destacando-se, entre eles, os híbridos SHS 4070 e AG 7088. As variedades que revelaram adaptabilidade ampla, a exemplo das variedades BRS Caimbé e AL 25, entre outras, têm importância fundamental nos sistemas de produção dos agricultores familiares da região.bitstream/CPAMN-2010/24201/1/BOLP90.pd

    Viveiro internacional de observação de arroz de sequeiro para América Latina - VIOAL-S/79.

    Get PDF
    bitstream/item/26073/1/pesqandamento20.pd

    Dirac Sea Effects on Superfluidity in Nuclear Matter

    Full text link
    We study two kinds of Dirac sea effects on the 1S0^1S_0 pairing gap in nuclear matter based on the relativistic Hartree approximation to quantum hadrodynamics and the Gor'kov formalism. We show that the vacuum fluctuation effect on the nucleon effective mass is more important than the direct coupling between the Fermi sea and the Dirac sea due to the pairing interaction. The effects of the high-momentum cutoff are also discussed.Comment: 11 pages, 3 eps figures included, uses REVTeX (with \tightenlines

    Relativistic Approach to Superfluidity in Nuclear Matter

    Get PDF
    Pairing correlations in symmetric nuclear matter are studied within a relativistic mean-field approximation based on a field theory of nucleons coupled to neutral (σ\sigma and ω\omega) and to charged (ϱ\varrho) mesons. The Hartree-Fock and the pairing fields are calculated in a self-consistent way. The energy gap is the result of a strong cancellation between the scalar and vector components of the pairing field. We find that the pair amplitude vanishes beyond a certain value of momentum of the paired nucleons. This fact determines an effective cutoff in the gap equation. The value of this cutoff gives an energy gap in agreement with the estimates of non relativistic calculations.Comment: 21 pages, REVTEX, 8 ps-figures, to appear in Phys.Rev.C. e-mail: [email protected]
    • …
    corecore