6,119 research outputs found

    Graphene-based spin-pumping transistor

    Full text link
    We demonstrate with a fully quantum-mechanical approach that graphene can function as gate-controllable transistors for pumped spin currents, i.e., a stream of angular momentum induced by the precession of adjacent magnetizations, which exists in the absence of net charge currents. Furthermore, we propose as a proof of concept how these spin currents can be modulated by an electrostatic gate. Because our proposal involves nano-sized systems that function with very high speeds and in the absence of any applied bias, it is potentially useful for the development of transistors capable of combining large processing speeds, enhanced integration and extremely low power consumption

    Graphene as a non-magnetic spin-current lens

    Full text link
    In spintronics, the ability to transport magnetic information often depends on the existence of a spin current traveling between two different magnetic objects acting as source and probe. A large fraction of this information never reaches the probe and is lost because the spin current tends to travel omni-directionally. We propose that a curved boundary between a gated and a non-gated region within graphene acts as an ideal lens for spin currents despite being entirely of non-magnetic nature. We show as a proof of concept that such lenses can be utilized to redirect the spin current that travels away from a source onto a focus region where a magnetic probe is located, saving a considerable fraction of the magnetic information that would be otherwise lost.Comment: 9 pages, 3 figure

    Steady-state entanglement between distant quantum dots in photonic crystal dimers

    Full text link
    We show that two spatially separated semiconductor quantum dots under resonant and continuous-wave excitation can be strongly entangled in the steady-state, thanks to their radiative coupling by mutual interaction through the normal modes of a photonic crystal dimer. We employ a quantum master equation formalism to quantify the steady-state entanglement by calculating the system {\it negativity}. Calculations are specified to consider realistic semiconductor nanostructure parameters for the photonic crystal dimer-quantum dots coupled system, determined by a guided mode expansion solution of Maxwell equations. Negativity values of the order of 0.1 (20%20\% of the maximum value) are shown for interdot distances that are larger than the resonant wavelength of the system. It is shown that the amount of entanglement is almost independent of the interdot distance, as long as the normal mode splitting of the photonic dimer is larger than their linewidths, which becomes the only requirement to achieve a local and individual qubit addressing. Considering inhomogeneously broadened quantum dots, we find that the steady-state entanglement is preserved as long as the detuning between the two quantum dot resonances is small when compared to their decay rates. The steady-state entanglement is shown to be robust against the effects of pure dephasing of the quantum dot transitions. We finally study the entanglement dynamics for a configuration in which one of the two quantum dots is initially excited and find that the transient negativity can be enhanced by more than a factor of two with respect to the steady-state value. These results are promising for practical applications of entangled states at short time scales.Comment: 10 pages, 7 figure

    Métodos de avaliação das condições hídricas das plantas.

    Get PDF
    O funcionamento normal das células demanda condições hídricas próximas da saturação, entretanto, essas condições não ocorrem e a célula encontra-se insaturada. O teor de água nas diferentes partes da planta pode variar enormemente. O armazenamento de água na planta é regido pelos fenômenos de interação da água com a planta. As condições hídricas nos tecidos das plantas podem ser avaliadas tanto pelo teor como pela energia livre da água e podem ser inferidas por métodos indiretos, como a temperatura das folhas. Pode-se avaliar o teor de água nas plantas r o potencial da água na célula, tecido ou órgão - avaliação com câmara de pressão Scholander. A resistência difusiva estomática pode ser avaliada através de quatro métodos: fluxo de massa, difusão de vapor, manutenção de fluxo, estado de equilíbrio, temperatura foliar (uso de termômetro de infravermelho).bitstream/CNPAF-2009-09/27961/1/comt_161.pd

    Carbon nanotube: a low-loss spin-current waveguide

    Full text link
    We demonstrate with a quantum-mechanical approach that carbon nanotubes are excellent spin-current waveguides and are able to carry information stored in a precessing magnetic moment for long distances with very little dispersion and with tunable degrees of attenuation. Pulsed magnetic excitations are predicted to travel with the nanotube Fermi velocity and are able to induce similar excitations in remote locations. Such an efficient way of transporting magnetic information suggests that nanotubes are promising candidates for memory devices with fast magnetization switchings
    • …
    corecore