23 research outputs found

    Prospección, recuperación, selección y pre-domesticación de plantas autóctonas con alto potencial funcional

    Full text link
    Tesis por compendio[ES] En las sociedades modernas ha aumentado la demanda de alimentos funcionales, así como la alimentación como una experiencia gastronómica. Surge así una oportunidad de revalorizar el uso de plantas silvestres comestibles mediante su domesticación y adaptación a cultivo. Algunas de estas especies, además de incorporar sabores distintos, son percibidas como beneficiosas para la salud, factor que a nivel científico puede corresponder con la acumulación de compuestos bioactivos. La presente Tesis es un trabajo de evaluación y pre-domesticación de dos especies de amplia distribución en nuestra región, destacadas por su alto potencial funcional y calidad organoléptica. El objetivo es, por un lado, aumentar el conocimiento en estos componentes de la calidad; y por otra parte, establecer una base para los programas de domesticación y adaptación a cultivo. La primera parte de esta Tesis se centra en el potencial de la berraza. Hasta la fecha se ha descrito su alto potencial en términos de contenido en fenoles totales y capacidad reductora de radicales libres. Nuestros resultados ampliando el número de muestras no sólo confirman dicho potencial, sino que establecen además una clara correlación entre ambos caracteres. Se sugiere así que la capacidad reductora de la berraza está principalmente definida por la acumulación de compuestos fenólicos, especialmente derivados de la quercetina. Por otro lado, el perfil volátil revela una prevalencia de compuestos terpenoides y fenilpropanoides. Este perfil es único en comparación con otras especies cultivadas; se identifican, sin embargo, ciertas similitudes que podrían explicar la relación de sabor entre ellas. Pese a su interés funcional y aromático, el cultivo convencional resulta poco prometedor. Queda no obstante la vía abierta a nuevos trabajos de adaptación a cultivo hidropónico como alternativa prometedora. La segunda parte de la Tesis está orientada al estudio de la rabaniza. Debido a la latencia secundaria de su semilla, se hace necesario en primer lugar establecer un tratamiento efectivo que permita obtener una germinación elevada y uniforme. Nuestros resultados sugieren un uso combinado de hipoclorito de sodio y ácido giberélico, tratamiento adecuado en los programas de mejora y que puede ser además adaptado para su uso comercial a gran escala. Los resultados de calidad funcional destacan especialmente la acumulación de ácido ascórbico, de alto poder antioxidante. En su perfil de glucosinolatos destaca la sinigrina, de potencial funcional y responsable en gran medida de su aroma; los resultados sugieren, no obstante, la síntesis de otros glucosinolatos. Es, por el contrario, acumuladora de nitratos como antinutrientes, factor que será determinante en las prácticas aplicadas para su futuro cultivo. Se han caracterizado además los materiales disponibles para identificar rasgos de interés a nivel morfoagronómico. La moderada variabilidad morfológica tiene claras implicaciones para los programas de mejora, limitando el número de cultivares a desarrollar. Por otra parte, el test hedónico sugiere que se pueden desarrollar distintos productos comerciales, como germinados y brotes tiernos, destinados a distintos nichos de mercado. Finalmente, se han evaluado dos sistemas modelo de cultivo, campo e invernadero, y el comportamiento en diversos ciclos. La producción en campo aumenta la calidad visual y funcional, con mayor contenido en vitamina C y fenoles y menor acumulación de nitratos. Sugerimos pues la producción de rabaniza en campo. No obstante, los meses más fríos pueden afectar negativamente la calidad, lo que supone una vía a nuevos estudios. En definitiva, los trabajos de esta Tesis aumentan, por un lado, el conocimiento morfroagronómico, nutracéutico y volátil de las plantas silvestres utilizadas. Suponen además una base para el establecimiento de estas especies como nuevos cultivos en las regiones mediterráneas, identifican[CA] En les societats modernes ha augmentat la demanda d'aliments funcionals i s'ha promogut a més l'alimentació com una experiència gastronòmica. Sorgeix així una oportunitat de revaloritzar l'ús de plantes silvestres comestibles, mitjançant la seua domesticació i adaptació a cultiu. Algunes d'aquestes espècies, a més d'incorporar sabors diferents, són percebudes com a beneficioses per a la salut, factor que a nivell científic pot correspondre amb l'acumulació de compostos bioactius. La present Tesi es un treball d'avaluació i pre-domesticació de dues espècies d'àmplia distribució a la nostra regió, destacades per un alt potencial funcional i qualitat organolèptica. L'objectiu és, d'una banda, augmentar el coneixement d'aquests dos components de la qualitat; i d'altra banda, establir una base per als programes de domesticació i adaptació a cultiu. La primera part d'aquesta Tesi se centra en el potencial del creixen de sèquia. Fins hui s'ha descrit el seu potencial en termes de contingut en fenols totals i capacitat reductora de radicals lliures. Els nostres resultats ampliant el nombre de mostres no solament confirmen aquest potencial, sinó que estableixen a més una clara correlació entre els dos caràcters. Se suggereix així que la capacitat reductora del creixen està principalment definida per l'acumulació de compostos fenòlics, especialment derivats de la quercetina. D'altra banda, el perfil volàtil revela una prevalença de compostos terpenoids i fenilpropanoids. Aquest perfil és únic en comparació amb altres espècies cultivades; no obstant això, s'identifiquen certes similituds que podrien explicar la relació entre aquestes espècies. Malgrat el seu interés funcional i aromàtic, el cultiu convencional és poc prometedor. No obstant això, queda oberta la via a nous treballs d'adaptació a cultiu hidropònic com a alternativa prometedora. La segona part de la Tesi està orientada a l'estudi de la ravenissa. A causa de la latència secundària de la seua llavor, es fa necessari en primer lloc establir un tractament efectiu que permeta obtindre una germinació elevada i uniforme. Els resultats suggereixen un ús combinat d'hipoclorit de i àcid giberèlic. Aquest tractament és adequat en els programes de millora i pot ser a més adaptat per al seu ús comercial a gran escala. Els resultats de qualitat funcional destaquen l'acumulació d'àcid ascòrbic, de gran poder antioxidant. En el seu perfil de glucosinolats destaca la sinigrina, de potencial funcional i responsable en gran manera de la seua aroma; els resultats suggereixen, a més, la síntesi d'uns altres glucosinolats. És, per contra, acumuladora de nitrats com a antinutrients, factor que serà determinant en les pràctiques que s'empren per al seu futur cultiu. S'han caracteritzat a més els materials disponibles per a identificar caràcters d'interés morfoagronòmic. La moderada variabilitat morfològica té clares implicacions per als programes de millora, limitant el nombre de varietats comercials a desenvolupar. D'altra banda, el test hedònic suggereix que es poden desenvolupar diferents productes comercials com són germinats i brots tendres, destinats a diferents mercats. Finalment, s'han avaluat dos sistemes de cultiu, camp i hivernacle, i el comportament en diversos cicles. La producció en camp augmenta la qualitat visual i funcional, amb un major contingut en vitamina C i compostos fenòlics i menor acumulació de nitrats. Suggerim doncs la producció de ravenissa sota camp. No obstant això, els mesos més freds poden afectar negativament la qualitat, el que suposa una via a nous estudis. En definitiva, els treballs d'aquesta Tesi augmenten, d'una banda, el coneixement morfroagronòmic, nutricèutic i volàtil de les plantes silvestres utilitzades. Suposen a més una base per a l'establiment d'aquestes espècies com a nous cultius adaptats a les regions mediterrànies, identificant punts clau per a la seua adaptaci[EN] Modern societies have increased the demands on functional, as well as the consideration of feeding as a gastronomic experience. These key points encourage the revalorization of wild edible plants by means of the domestication and adaptation into crop systems. Some of these species, apart from providing new tastes, are also perceived as beneficial for health. These perceived benefits can scientifically correspond to the accumulation of bioactive compounds. The current Thesis is aimed at the evaluation and pre-domestication of two wild species broadly found in our region, which highlight for their functional potential and organoleptic quality. The aim is, on one hand, to increase the knowledge on these components of quality; and, on the other hand, to establish a basis for the domestication and crop adaptation programs. The first part of this Thesis is focused on analyzing the potential of water celery. Previous authors have described high antioxidant properties for this species in terms of content in total phenolics and free radical scavenging capacity. Our work with a larger quantity of materials confirms this potential and establishes a clear correlation between both traits. Thus, we suggest that the free radical scavenging capacity is mainly due to the accumulation of phenolics, mainly quercetin derived compounds. On the other hand, the volatile profile is rich in terpenoid compounds and phenylpropanoids. Such profile is unique compared to other cultivated species. However, there are some similarities that may explain the resemblances among them. Despite the functional and aromatic interest of water celery, its adaptation into conventional systems is not greatly promising. Nevertheless, we suggest that future works could consider the hydroponic system as a promising alternative. The second part of this Thesis is focused on the study of wall rocket. Due to the secondary dormancy of their seeds, it is firstly needed the establishment of an adequate treatment for a high and uniform germination. Our results suggest the synergistic use of sodium hypochlorite together with gibberellic acid. This treatment can be successfully used in breeding programs, and also adapted for commercial application in a productive scale. Results of the functional quality highlight the accumulation of ascorbic acid, with high antioxidant power. Sinigrin is the main glucosinolate determined. Sinigrin has high functional potential and is great responsible of the aroma in wall rocket. Moreover, results suggest that other glucosinolates are also present. On the other hand, wall rocket accumulates high levels of nitrates as antinutrients. This trait is a critical determinant for the cultivation practices to be used. The available materials have been also characterized in order to identify morphoagronomic traits of interest. The moderate morphological variability has clear implications for breeding programs and the quantity of cultivars that can be obtained. On the other hand, the hedonic test suggests that several products could be commercially exploited, including microgreens and baby-leaves. The development of different commercial products can increase the market opportunities. Finally, two model systems of cultivation, field and greenhouse, and also the behavior of plants under different growing cycles, have been evaluated. The field production increases the visual and functional quality, with the enhancement of vitamin C and total phenolic and the reduction of nitrates. Thus, we suggest that commercial production should be performed under field conditions. Nevertheless, increasing the quality during the coldest months is still an area of study. In summary, this Thesis increase the morphoagronomic, nutraceutical and volatile knowledge on the wild plants used. In addition, these works are a basis for the establishment of these species as new crops adapted to the Mediterranean regions, with the identification of key points for crop adaptation.Guijarro Real, C. (2019). Prospección, recuperación, selección y pre-domesticación de plantas autóctonas con alto potencial funcional [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/133054TESISPremios Extraordinarios de tesis doctoralesCompendi

    Volatile Profile of Wall Rocket Baby-Leaves (Diplotaxis erucoides) Grown under Greenhouse: Main Compounds and Genotype Diversity

    Full text link
    [EN] Wall rocket is a leafy vegetable with pungent flavor related to the presence of isothiocyanates (ITCs). Despite interest in it as a crop of high organoleptic quality, the variability of the volatile profile in the species remains unknown. Twenty-four populations grown under a greenhouse were evaluated. A considerable diversity for the total levels of volatiles was found, providing information of the aroma intensity among accessions. ITCs represented the main fraction. Allyl ITC was the main compound, and levels showed up to 6-fold difference among populations. The esters fraction was mainly represented bycis-3-hexenyl isovalerate andcis-3-hexenyl butyrate, with 20-fold differences among populations. Additionally, the content in sinigrin was evaluated as main GSL in wall rocket. Differences reached up to 13-fold. These results suggest that some populations can be used to develop highly pungent varieties, whereas some others can be selected for mild-pungent varieties, as it is the case of DER045 with low levels of ITCs and high in esters. The presence of several ITCs in the profile also suggested the presence of other novel GSLs. Overall, the work increases the knowledge in the variability of wall rocket for the volatile profile and sinigrin accumulation, a starting point for future breeding programs.C.G. thanks the Ministerio de Educacion, Cultura y Deporte of Spain (MECD) for the financial support by means of a predoctoral FPU grant (FPU14-06798).Guijarro-Real, C.; Rodríguez Burruezo, A.; Fita, A. (2020). Volatile Profile of Wall Rocket Baby-Leaves (Diplotaxis erucoides) Grown under Greenhouse: Main Compounds and Genotype Diversity. Agronomy. 10(6):1-16. https://doi.org/10.3390/agronomy10060802S116106Guijarro-Real, C., Navarro, A., Esposito, S., Festa, G., Macellaro, R., Di Cesare, C., … Tripodi, P. (2020). Large scale phenotyping and molecular analysis in a germplasm collection of rocket salad (Eruca vesicaria) reveal a differentiation of the gene pool by geographical origin. Euphytica, 216(3). doi:10.1007/s10681-020-02586-xD’Antuono, L. F., Elementi, S., & Neri, R. (2009). Exploring new potential health-promoting vegetables: glucosinolates and sensory attributes of rocket salads and relatedDiplotaxisandErucaspecies. Journal of the Science of Food and Agriculture, 89(4), 713-722. doi:10.1002/jsfa.3507Guijarro-Real, C., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2020). Consumers acceptance and volatile profile of wall rocket (Diplotaxis erucoides). Food Research International, 132, 109008. doi:10.1016/j.foodres.2020.109008Guarrera, P. M., & Savo, V. (2016). Wild food plants used in traditional vegetable mixtures in Italy. Journal of Ethnopharmacology, 185, 202-234. doi:10.1016/j.jep.2016.02.050Guijarro-Real, C., Adalid-Martínez, A. M., Aguirre, K., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2019). Growing Conditions Affect the Phytochemical Composition of Edible Wall Rocket (Diplotaxis erucoides). Agronomy, 9(12), 858. doi:10.3390/agronomy9120858Guijarro-Real, C., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2020). Morphological Diversity and Bioactive Compounds in Wall Rocket (Diplotaxis erucoides (L.) DC.). Agronomy, 10(2), 306. doi:10.3390/agronomy10020306Guijarro-Real, C., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2019). Potential of wall rocket (Diplotaxis erucoides) as a new crop: Influence of the growing conditions on the visual quality of the final product. Scientia Horticulturae, 258, 108778. doi:10.1016/j.scienta.2019.108778Bell, L., Yahya, H. N., Oloyede, O. O., Methven, L., & Wagstaff, C. (2017). Changes in rocket salad phytochemicals within the commercial supply chain: Glucosinolates, isothiocyanates, amino acids and bacterial load increase significantly after processing. Food Chemistry, 221, 521-534. doi:10.1016/j.foodchem.2016.11.154Bell, L., Oloyede, O. O., Lignou, S., Wagstaff, C., & Methven, L. (2018). Taste and Flavor Perceptions of Glucosinolates, Isothiocyanates, and Related Compounds. Molecular Nutrition & Food Research, 62(18), 1700990. doi:10.1002/mnfr.201700990Sávio, A. L. V., da Silva, G. N., & Salvadori, D. M. F. (2015). Inhibition of bladder cancer cell proliferation by allyl isothiocyanate (mustard essential oil). Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 771, 29-35. doi:10.1016/j.mrfmmm.2014.11.004Savio, A. L. V., da Silva, G. N., Camargo, E. A. de, & Salvadori, D. M. F. (2014). Cell cycle kinetics, apoptosis rates, DNA damage and TP53 gene expression in bladder cancer cells treated with allyl isothiocyanate (mustard essential oil). Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 762, 40-46. doi:10.1016/j.mrfmmm.2014.02.006Rajakumar, T., Pugalendhi, P., & Thilagavathi, S. (2015). Dose response chemopreventive potential of allyl isothiocyanate against 7,12-dimethylbenz(a)anthracene induced mammary carcinogenesis in female Sprague-Dawley rats. Chemico-Biological Interactions, 231, 35-43. doi:10.1016/j.cbi.2015.02.015Di Gioia, F., Avato, P., Serio, F., & Argentieri, M. P. (2018). Glucosinolate profile of Eruca sativa, Diplotaxis tenuifolia and Diplotaxis erucoides grown in soil and soilless systems. Journal of Food Composition and Analysis, 69, 197-204. doi:10.1016/j.jfca.2018.01.022D’Antuono, L. F., Elementi, S., & Neri, R. (2008). Glucosinolates in Diplotaxis and Eruca leaves: Diversity, taxonomic relations and applied aspects. Phytochemistry, 69(1), 187-199. doi:10.1016/j.phytochem.2007.06.019Guijarro-Real, C., Adalid-Martínez, A. M., Gregori-Montaner, A., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2020). Factors affecting germination of Diplotaxis erucoides and their effect on selected quality properties of the germinated products. Scientia Horticulturae, 261, 109013. doi:10.1016/j.scienta.2019.109013Guijarro-Real, C., Rodríguez-Burruezo, A., Prohens, J., Raigón, M. D., & Fita, A. (2019). HS-SPME analysis of the volatiles profile of water celery (Apium nodiflorum), a wild vegetable with increasing culinary interest. Food Research International, 121, 765-775. doi:10.1016/j.foodres.2018.12.054Moreno, E., Fita, A., González-Mas, M. C., & Rodríguez-Burruezo, A. (2012). HS-SPME study of the volatile fraction of Capsicum accessions and hybrids in different parts of the fruit. Scientia Horticulturae, 135, 87-97. doi:10.1016/j.scienta.2011.12.001Bell, L., Spadafora, N. D., Müller, C. T., Wagstaff, C., & Rogers, H. J. (2016). Use of TD-GC–TOF-MS to assess volatile composition during post-harvest storage in seven accessions of rocket salad (Eruca sativa). Food Chemistry, 194, 626-636. doi:10.1016/j.foodchem.2015.08.043Pasini, F., Verardo, V., Caboni, M. F., & D’Antuono, L. F. (2012). Determination of glucosinolates and phenolic compounds in rocket salad by HPLC-DAD–MS: Evaluation of Eruca sativa Mill. and Diplotaxis tenuifolia L. genetic resources. Food Chemistry, 133(3), 1025-1033. doi:10.1016/j.foodchem.2012.01.021Metsalu, T., & Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43(W1), W566-W570. doi:10.1093/nar/gkv468López-Gresa, M. P., Lisón, P., Campos, L., Rodrigo, I., Rambla, J. L., Granell, A., … Bellés, J. M. (2017). A Non-targeted Metabolomics Approach Unravels the VOCs Associated with the Tomato Immune Response against Pseudomonas syringae. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01188Jirovetz, L., Smith, D., & Buchbauer, G. (2002). Aroma Compound Analysis of Eruca sativa (Brassicaceae) SPME Headspace Leaf Samples Using GC, GC−MS, and Olfactometry. Journal of Agricultural and Food Chemistry, 50(16), 4643-4646. doi:10.1021/jf020129nGonzález-Mas, M. C., Rambla, J. L., Alamar, M. C., Gutiérrez, A., & Granell, A. (2011). Comparative Analysis of the Volatile Fraction of Fruit Juice from Different Citrus Species. PLoS ONE, 6(7), e22016. doi:10.1371/journal.pone.0022016Rodríguez-Burruezo, A., Kollmannsberger, H., González-Mas, M. C., Nitz, S., & Fernando, N. (2010). HS-SPME Comparative Analysis of Genotypic Diversity in the Volatile Fraction and Aroma-Contributing Compounds of Capsicum Fruits from the annuum−chinense−frutescens Complex. Journal of Agricultural and Food Chemistry, 58(7), 4388-4400. doi:10.1021/jf903931tBlažević, I., & Mastelić, J. (2008). Free and bound volatiles of rocket (Eruca sativaMill.). Flavour and Fragrance Journal, 23(4), 278-285. doi:10.1002/ffj.1883Hanschen, F. S., & Schreiner, M. (2017). Isothiocyanates, Nitriles, and Epithionitriles from Glucosinolates Are Affected by Genotype and Developmental Stage in Brassica oleracea Varieties. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01095Blažević, I., & Mastelić, J. (2009). Glucosinolate degradation products and other bound and free volatiles in the leaves and roots of radish (Raphanus sativus L.). Food Chemistry, 113(1), 96-102. doi:10.1016/j.foodchem.2008.07.029Miyazawa, M., Nishiguchi, T., & Yamafuji, C. (2005). Volatile components of the leaves ofBrassica rapa L. var.perviridis Bailey. Flavour and Fragrance Journal, 20(2), 158-160. doi:10.1002/ffj.1335Clemente-Villalba, J., Ariza, D., García-Garví, J. M., Sánchez-Bravo, P., Noguera-Artiaga, L., Issa-Issa, H., … Carbonell-Barrachina, Á. A. (2020). Characterization and potential use of Diplotaxis erucoides as food ingredient for a sustainable modern cuisine and comparison with commercial mustards and wasabis. European Food Research and Technology, 246(7), 1429-1438. doi:10.1007/s00217-020-03501-3Raffo, A., Masci, M., Moneta, E., Nicoli, S., Sánchez del Pulgar, J., & Paoletti, F. (2018). Characterization of volatiles and identification of odor-active compounds of rocket leaves. Food Chemistry, 240, 1161-1170. doi:10.1016/j.foodchem.2017.08.009Mastrandrea, L., Amodio, M. L., Pati, S., & Colelli, G. (2017). Effect of modified atmosphere packaging and temperature abuse on flavor related volatile compounds of rocket leaves (Diplotaxis tenuifolia L.). Journal of Food Science and Technology, 54(8), 2433-2442. doi:10.1007/s13197-017-2685-6Miyazawa, M., Maehara, T., & Kurose, K. (2002). Composition of the essential oil from the leaves ofEruca sativa. Flavour and Fragrance Journal, 17(3), 187-190. doi:10.1002/ffj.1079Petretto, G. L., Urgeghe, P. P., Massa, D., & Melito, S. (2019). Effect of salinity (NaCl) on plant growth, nutrient content, and glucosinolate hydrolysis products trends in rocket genotypes. Plant Physiology and Biochemistry, 141, 30-39. doi:10.1016/j.plaphy.2019.05.012Spadafora, N. D., Amaro, A. L., Pereira, M. J., Müller, C. T., Pintado, M., & Rogers, H. J. (2016). Multi-trait analysis of post-harvest storage in rocket salad (Diplotaxis tenuifolia) links sensorial, volatile and nutritional data. Food Chemistry, 211, 114-123. doi:10.1016/j.foodchem.2016.04.107Spadafora, N. D., Cocetta, G., Ferrante, A., Herbert, R. J., Dimitrova, S., Davoli, D., … Müller, C. T. (2019). Short-Term Post-Harvest Stress that Affects Profiles of Volatile Organic Compounds and Gene Expression in Rocket Salad during Early Post-Harvest Senescence. Plants, 9(1), 4. doi:10.3390/plants9010004Villatoro-Pulido, M., Priego-Capote, F., Álvarez-Sánchez, B., Saha, S., Philo, M., Obregón-Cano, S., … Del Río-Celestino, M. (2013). An approach to the phytochemical profiling of rocket [Eruca sativa (Mill.) Thell]. Journal of the Science of Food and Agriculture, 93(15), 3809-3819. doi:10.1002/jsfa.6286Bending, G. D., & Lincoln, S. D. (1999). Characterisation of volatile sulphur-containing compounds produced during decomposition of Brassica juncea tissues in soil. Soil Biology and Biochemistry, 31(5), 695-703. doi:10.1016/s0038-0717(98)00163-1Kroener, E.-M., & Buettner, A. (2017). Unravelling important odorants in horseradish ( Armoracia rusticana ). Food Chemistry, 232, 455-465. doi:10.1016/j.foodchem.2017.04.042Sultana, T., Porter, N. G., Savage, G. P., & McNeil, D. L. (2003). Comparison of Isothiocyanate Yield from Wasabi Rhizome Tissues Grown in Soil or Water. Journal of Agricultural and Food Chemistry, 51(12), 3586-3591. doi:10.1021/jf021116cA. Depree, J., M. Howard, T., & P. Savage, G. (1998). Flavour and pharmaceutical properties of the volatile sulphur compounds of Wasabi (Wasabia japonica). Food Research International, 31(5), 329-337. doi:10.1016/s0963-9969(98)00105-7Pasini, F., Verardo, V., Cerretani, L., Caboni, M. F., & D’Antuono, L. F. (2011). Rocket salad (Diplotaxis and Eruca spp.) sensory analysis and relation with glucosinolate and phenolic content. Journal of the Science of Food and Agriculture, 91(15), 2858-2864. doi:10.1002/jsfa.4535Ruther, J. (2000). Retention index database for identification of general green leaf volatiles in plants by coupled capillary gas chromatography−mass spectrometry. Journal of Chromatography A, 890(2), 313-319. doi:10.1016/s0021-9673(00)00618-xD’Auria, J. C., Pichersky, E., Schaub, A., Hansel, A., & Gershenzon, J. (2006). Characterization of a BAHD acyltransferase responsible for producing the green leaf volatile (Z)-3-hexen-1-yl acetate in Arabidopsis thaliana. The Plant Journal, 49(2), 194-207. doi:10.1111/j.1365-313x.2006.02946.xThe Good Scents Companyhttp://www.thegoodscentscompany.com/Baenas, N., Marhuenda, J., García-Viguera, C., Zafrilla, P., & Moreno, D. (2019). Influence of Cooking Methods on Glucosinolates and Isothiocyanates Content in Novel Cruciferous Foods. Foods, 8(7), 257. doi:10.3390/foods8070257Agneta, R., Lelario, F., De Maria, S., Möllers, C., Bufo, S. A., & Rivelli, A. R. (2014). Glucosinolate profile and distribution among plant tissues and phenological stages of field-grown horseradish. Phytochemistry, 106, 178-187. doi:10.1016/j.phytochem.2014.06.019Cools, K., & Terry, L. A. (2018). The effect of processing on the glucosinolate profile in mustard seed. Food Chemistry, 252, 343-348. doi:10.1016/j.foodchem.2018.01.096Bell, L., Oruna-Concha, M. J., & Wagstaff, C. (2015). Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC–MS: Highlighting the potential for improving nutritional value of rocket crops. Food Chemistry, 172, 852-861. doi:10.1016/j.foodchem.2014.09.116Taranto, F., Francese, G., Di Dato, F., D’Alessandro, A., Greco, B., Onofaro Sanajà, V., … Tripodi, P. (2016). Leaf Metabolic, Genetic, and Morphophysiological Profiles of Cultivated and Wild Rocket Salad (Eruca and Diplotaxis Spp.). Journal of Agricultural and Food Chemistry, 64(29), 5824-5836. doi:10.1021/acs.jafc.6b01737Fahey, J. W., Zalcmann, A. T., & Talalay, P. (2001). The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry, 56(1), 5-51. doi:10.1016/s0031-9422(00)00316-2Bell, L., Methven, L., Signore, A., Oruna-Concha, M. J., & Wagstaff, C. (2017). Analysis of seven salad rocket (Eruca sativa) accessions: The relationships between sensory attributes and volatile and non-volatile compounds. Food Chemistry, 218, 181-191. doi:10.1016/j.foodchem.2016.09.07

    Morphological diversity and bioactive compounds in wall rocket (Diplotaxis erucoides (L.) DC.)

    Full text link
    [EN] Wall rocket is a wild vegetable with interest to become a crop. However, the information regarding morphological variability in the species is scarce, despite the interest it has received for breeding programs. In addition, evaluating the phytochemical composition can also be useful for developing materials of a high quality. In this study, forty-four populations were evaluated for selected morphoagronomic traits and contents in ascorbic acid (AA), total phenolics (TP), and nitrates (NO3¿). Wall rocket plants had, on average, an intermediate growth habit and a good response to transplant. Moderate variability, mainly for size-related traits, was found, with low to moderate heritability estimates (H2 < 0.35). A Principal Component Analysis revealed that some materials may be selected for differenced traits. On the other hand, wall rocket materials had, on average, high contents in AA (53 mg 100 g¿1) and TP (116 mg CAE 100 g¿1) but also accumulated high levels of NO3¿ (891 mg 100 g¿1). Significant positive correlations were found for AA and TP, which could be exploited for increasing the antioxidant activity and properties of the final product. We provide new information on the variation of wall rocket for traits of morphological and phytochemical interest, which together with other traits, such as the profile of glucosinolates, can be useful for the selection of materials in future breeding programs.C.G. thanks the Ministerio de Educacion, Cultura y Deporte of Spain (MECD) for the financial support by means of a predoctoral FPU grant (FPU14-06798). Authors also thank the "Banco de Germoplasma Vegetal-UPM Cesar Gomez Campo" (Madrid, Spain) for transfer of seeds.Guijarro-Real, C.; Prohens Tomás, J.; Rodríguez Burruezo, A.; Fita, A. (2020). Morphological diversity and bioactive compounds in wall rocket (Diplotaxis erucoides (L.) DC.). Agronomy. 10(2):1-14. https://doi.org/10.3390/agronomy10020306S114102Shikov, A. N., Tsitsilin, A. N., Pozharitskaya, O. N., Makarov, V. G., & Heinrich, M. (2017). Traditional and Current Food Use of Wild Plants Listed in the Russian Pharmacopoeia. Frontiers in Pharmacology, 8. doi:10.3389/fphar.2017.00841Shin, T., Fujikawa, K., Moe, A. Z., & Uchiyama, H. (2018). Traditional knowledge of wild edible plants with special emphasis on medicinal uses in Southern Shan State, Myanmar. Journal of Ethnobiology and Ethnomedicine, 14(1). doi:10.1186/s13002-018-0248-1Łuczaj, Ł., Pieroni, A., Tardío, J., Pardo-de-Santayana, M., Sõukand, R., Svanberg, I., & Kalle, R. (2012). Wild food plant use in 21st century Europe: the disappearance of old traditions and the search for new cuisines involving wild edibles. Acta Societatis Botanicorum Poloniae, 81(4), 359-370. doi:10.5586/asbp.2012.031Pinela, J., Carvalho, A. M., & Ferreira, I. C. F. R. (2017). Wild edible plants: Nutritional and toxicological characteristics, retrieval strategies and importance for today’s society. Food and Chemical Toxicology, 110, 165-188. doi:10.1016/j.fct.2017.10.020Licata, M., Tuttolomondo, T., Leto, C., Virga, G., Bonsangue, G., Cammalleri, I., … La Bella, S. (2016). A survey of wild plant species for food use in Sicily (Italy) – results of a 3-year study in four Regional Parks. Journal of Ethnobiology and Ethnomedicine, 12(1). doi:10.1186/s13002-015-0074-7Guarrera, P. M., & Savo, V. (2016). Wild food plants used in traditional vegetable mixtures in Italy. Journal of Ethnopharmacology, 185, 202-234. doi:10.1016/j.jep.2016.02.050Spadafora, N. D., Amaro, A. L., Pereira, M. J., Müller, C. T., Pintado, M., & Rogers, H. J. (2016). Multi-trait analysis of post-harvest storage in rocket salad (Diplotaxis tenuifolia) links sensorial, volatile and nutritional data. Food Chemistry, 211, 114-123. doi:10.1016/j.foodchem.2016.04.107Egea-Gilabert, C., Fernández, J. A., Migliaro, D., Martínez-Sánchez, J. J., & Vicente, M. J. (2009). Genetic variability in wild vs. cultivated Eruca vesicaria populations as assessed by morphological, agronomical and molecular analyses. Scientia Horticulturae, 121(3), 260-266. doi:10.1016/j.scienta.2009.02.020Disciglio, G., Tarantino, A., Frabboni, L., Gagliardi, A., Giuliani, M. M., Tarantino, E., & Gatta, G. (2017). Qualitative characterization of cultivated and wild edible plants: mineral elements, phenols content and antioxidant capacity. Italian Journal of Agronomy, 11. doi:10.4081/ija.2017.1036Schiattone, M. I., Viggiani, R., Di Venere, D., Sergio, L., Cantore, V., Todorovic, M., … Candido, V. (2018). Impact of irrigation regime and nitrogen rate on yield, quality and water use efficiency of wild rocket under greenhouse conditions. Scientia Horticulturae, 229, 182-192. doi:10.1016/j.scienta.2017.10.036Bondonno, C. P., Blekkenhorst, L. C., Liu, A. H., Bondonno, N. P., Ward, N. C., Croft, K. D., & Hodgson, J. M. (2018). Vegetable-derived bioactive nitrate and cardiovascular health. Molecular Aspects of Medicine, 61, 83-91. doi:10.1016/j.mam.2017.08.001Lundberg, J. O., Carlström, M., & Weitzberg, E. (2018). Metabolic Effects of Dietary Nitrate in Health and Disease. Cell Metabolism, 28(1), 9-22. doi:10.1016/j.cmet.2018.06.007Herraiz, F. J., Vilanova, S., Andújar, I., Torrent, D., Plazas, M., Gramazio, P., & Prohens, J. (2015). Morphological and molecular characterization of local varieties, modern cultivars and wild relatives of an emerging vegetable crop, the pepino (Solanum muricatum), provides insight into its diversity, relationships and breeding history. Euphytica, 206(2), 301-318. doi:10.1007/s10681-015-1454-8BGV-UPM. Coleccioneshttp://www.bancodegermoplasma.upm.es/colecciones.html.Taranto, F., Francese, G., Di Dato, F., D’Alessandro, A., Greco, B., Onofaro Sanajà, V., … Tripodi, P. (2016). Leaf Metabolic, Genetic, and Morphophysiological Profiles of Cultivated and Wild Rocket Salad (Eruca and Diplotaxis Spp.). Journal of Agricultural and Food Chemistry, 64(29), 5824-5836. doi:10.1021/acs.jafc.6b01737Bell, L., Methven, L., Signore, A., Oruna-Concha, M. J., & Wagstaff, C. (2017). Analysis of seven salad rocket (Eruca sativa) accessions: The relationships between sensory attributes and volatile and non-volatile compounds. Food Chemistry, 218, 181-191. doi:10.1016/j.foodchem.2016.09.076Herraiz, F. J., Vilanova, S., Plazas, M., Gramazio, P., Andújar, I., Rodríguez-Burruezo, A., … Prohens, J. (2015). Phenological growth stages of pepino (Solanum muricatum) according to the BBCH scale. Scientia Horticulturae, 183, 1-7. doi:10.1016/j.scienta.2014.12.008Guijarro-Real, C., Adalid-Martínez, A. M., Gregori-Montaner, A., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2020). Factors affecting germination of Diplotaxis erucoides and their effect on selected quality properties of the germinated products. Scientia Horticulturae, 261, 109013. doi:10.1016/j.scienta.2019.109013Rodríguez, G. R., Moyseenko, J. B., Robbins, M. D., Huarachi Morejón, N., Francis, D. M., & van der Knaap, E. (2010). Tomato Analyzer: A Useful Software Application to Collect Accurate and Detailed Morphological and Colorimetric Data from Two-dimensional Objects. Journal of Visualized Experiments, (37). doi:10.3791/1856Guijarro-Real, C., Prohens, J., Rodriguez-Burruezo, A., Adalid-Martínez, A. M., López-Gresa, M. P., & Fita, A. (2019). Wild edible fool’s watercress, a potential crop with high nutraceutical properties. PeerJ, 7, e6296. doi:10.7717/peerj.6296Egea-Gilabert, C., Ruiz-Hernández, M. V., Parra, M. Á., & Fernández, J. A. (2014). Characterization of purslane (Portulaca oleracea L.) accessions: Suitability as ready-to-eat product. Scientia Horticulturae, 172, 73-81. doi:10.1016/j.scienta.2014.03.051Rodríguez-Burruezo, A., Prohens, J., & Nuez, F. (2002). Genetic Analysis of Quantitative Traits in Pepino (Solanum muricatum) in Two Growing Seasons. Journal of the American Society for Horticultural Science, 127(2), 271-278. doi:10.21273/jashs.127.2.271Metsalu, T., & Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43(W1), W566-W570. doi:10.1093/nar/gkv468Prohens, J., Gramazio, P., Plazas, M., Dempewolf, H., Kilian, B., Díez, M. J., … Vilanova, S. (2017). Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica, 213(7). doi:10.1007/s10681-017-1938-9Mousavizadeh, S. J., Hassandokht, M. R., & Kashi, A. (2015). Multivariate analysis of edible Asparagus species in Iran by morphological characters. Euphytica, 206(2), 445-457. doi:10.1007/s10681-015-1508-yD’Antuono, L. F., Elementi, S., & Neri, R. (2008). Glucosinolates in Diplotaxis and Eruca leaves: Diversity, taxonomic relations and applied aspects. Phytochemistry, 69(1), 187-199. doi:10.1016/j.phytochem.2007.06.019Di Gioia, F., Avato, P., Serio, F., & Argentieri, M. P. (2018). Glucosinolate profile of Eruca sativa, Diplotaxis tenuifolia and Diplotaxis erucoides grown in soil and soilless systems. Journal of Food Composition and Analysis, 69, 197-204. doi:10.1016/j.jfca.2018.01.022Colonna, E., Rouphael, Y., Barbieri, G., & De Pascale, S. (2016). Nutritional quality of ten leafy vegetables harvested at two light intensities. Food Chemistry, 199, 702-710. doi:10.1016/j.foodchem.2015.12.068Salvatore, S., Pellegrini, N., Brenna, O. V., Del Rio, D., Frasca, G., Brighenti, F., & Tumino, R. (2005). Antioxidant Characterization of Some Sicilian Edible Wild Greens. Journal of Agricultural and Food Chemistry, 53(24), 9465-9471. doi:10.1021/jf051806rBennett, R. N., Rosa, E. A. S., Mellon, F. A., & Kroon, P. A. (2006). Ontogenic Profiling of Glucosinolates, Flavonoids, and Other Secondary Metabolites in Eruca sativa (Salad Rocket), Diplotaxis erucoides (Wall Rocket), Diplotaxis tenuifolia (Wild Rocket), and Bunias orientalis (Turkish Rocket). Journal of Agricultural and Food Chemistry, 54(11), 4005-4015. doi:10.1021/jf052756tFrancisco, M., Velasco, P., Moreno, D. A., García-Viguera, C., & Cartea, M. E. (2010). Cooking methods of Brassica rapa affect the preservation of glucosinolates, phenolics and vitamin C. Food Research International, 43(5), 1455-1463. doi:10.1016/j.foodres.2010.04.024Bell, L., Oloyede, O. O., Lignou, S., Wagstaff, C., & Methven, L. (2018). Taste and Flavor Perceptions of Glucosinolates, Isothiocyanates, and Related Compounds. Molecular Nutrition & Food Research, 62(18), 1700990. doi:10.1002/mnfr.201700990Bianco, V. V., Santamaria, P., & Elia, A. (1998). NUTRITIONAL VALUE AND NITRATE CONTENT IN EDIBLE WILD SPECIES USED IN SOUTHERN ITALY. Acta Horticulturae, (467), 71-90. doi:10.17660/actahortic.1998.467.7Tang, L., Luo, W., Tian, S., He, Z., Stoffella, P. J., & Yang, X. (2016). Genotypic differences in cadmium and nitrate co-accumulation among the Chinese cabbage genotypes under field conditions. Scientia Horticulturae, 201, 92-100. doi:10.1016/j.scienta.2016.01.040Bahadoran, Z., Mirmiran, P., Jeddi, S., Azizi, F., Ghasemi, A., & Hadaegh, F. (2016). Nitrate and nitrite content of vegetables, fruits, grains, legumes, dairy products, meats and processed meats. Journal of Food Composition and Analysis, 51, 93-105. doi:10.1016/j.jfca.2016.06.00

    Potential of wall rocket (Diplotaxis erucoides) as a new crop: influence of the growing conditions on the visual quality of the final product

    Full text link
    [EN] Wild edible plants can be used for developing new crops and diversifying food markets. Wall rocket (Diplotaxis erucoides) is an annual weed with potential as a new crop. The present study aims at evaluating the effects of different growing conditions in the visual quality of this potential new crop. We evaluated eleven accessions of wall rocket, together with commercial rocket accessions (Eruca sativa and D. tenuifolia). Experiments were simultaneously conducted under field and greenhouse systems, and performed during two seasons. Fifteen descriptors related to leaf size, colour and shape were evaluated. Analysis of variance detected significant differences in size and shape among the three species studied, revealing the distinctiveness of wall rocket from the other rocket crops. This distinctiveness may enhance its establishment as a new crop. Comparison between the wall rocket accessions was also performed. There was relatively low morphological diversity among them. By contrast, the growing conditions had a high effect on the visual quality, especially for colour related traits and intensity of lobation, and also in the flowering time. As a consequence, the heritability estimates were low to moderate. The principal component analysis (PCA) clustered accessions according to the growing conditions, thus reinforcing the importance of environment in the morphology of wall rocket. The most promising quality of the leaves was obtained under field conditions, where the bright green colour and intensity of lobation were enhanced. In particular, accession DER006-1 was identified as a good candidate for developing a new cultivar. These results establish a basis for the management of wall rocket as a new crop. At the same time, results regarding the low diversity registered for morphology in the accessions evaluated have important implications for future breeding programmes of wall rocket.C. Guijarro-Real is grateful to the Ministerio de Educacion, Cultura y Deporte of Spain (MECD) for the predoctoral FPU grant (FPU14-06798). Authors also thank Dr. A. M. Adalid-Martinez, Ms. K. Aguirre, and Ms. S. Benicka for helping in the field tasks.Guijarro-Real, C.; Prohens Tomás, J.; Rodríguez Burruezo, A.; Fita, A. (2019). Potential of wall rocket (Diplotaxis erucoides) as a new crop: influence of the growing conditions on the visual quality of the final product. Scientia Horticulturae. 258:1-9. https://doi.org/10.1016/j.scienta.2019.108778S19258Araj, S.-E., & Wratten, S. D. (2015). Comparing existing weeds and commonly used insectary plants as floral resources for a parasitoid. Biological Control, 81, 15-20. doi:10.1016/j.biocontrol.2014.11.003Bell, L., Methven, L., & Wagstaff, C. (2017). The influence of phytochemical composition and resulting sensory attributes on preference for salad rocket (Eruca sativa) accessions by consumers of varying TAS2R38 diplotype. Food Chemistry, 222, 6-17. doi:10.1016/j.foodchem.2016.11.153Bell, L., & Wagstaff, C. (2014). Glucosinolates, Myrosinase Hydrolysis Products, and Flavonols Found in Rocket (Eruca sativa and Diplotaxis tenuifolia). Journal of Agricultural and Food Chemistry, 62(20), 4481-4492. doi:10.1021/jf501096xBianco, V. V., Santamaria, P., & Elia, A. (1998). NUTRITIONAL VALUE AND NITRATE CONTENT IN EDIBLE WILD SPECIES USED IN SOUTHERN ITALY. Acta Horticulturae, (467), 71-90. doi:10.17660/actahortic.1998.467.7Bonasia, A., Lazzizera, C., Elia, A., & Conversa, G. (2017). Nutritional, Biophysical and Physiological Characteristics of Wild Rocket Genotypes As Affected by Soilless Cultivation System, Salinity Level of Nutrient Solution and Growing Period. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.00300Buitrago Acevedo, M. F., Groen, T. A., Hecker, C. A., & Skidmore, A. K. (2017). Identifying leaf traits that signal stress in TIR spectra. ISPRS Journal of Photogrammetry and Remote Sensing, 125, 132-145. doi:10.1016/j.isprsjprs.2017.01.014Caruso, G., Parrella, G., Giorgini, M., & Nicoletti, R. (2018). Crop Systems, Quality and Protection of Diplotaxis tenuifolia. Agriculture, 8(4), 55. doi:10.3390/agriculture8040055Cavaiuolo, M., & Ferrante, A. (2014). Nitrates and Glucosinolates as Strong Determinants of the Nutritional Quality in Rocket Leafy Salads. Nutrients, 6(4), 1519-1538. doi:10.3390/nu6041519Colonna, E., Rouphael, Y., Barbieri, G., & De Pascale, S. (2016). Nutritional quality of ten leafy vegetables harvested at two light intensities. Food Chemistry, 199, 702-710. doi:10.1016/j.foodchem.2015.12.068D’Amelia, V., Aversano, R., Ruggiero, A., Batelli, G., Appelhagen, I., Dinacci, C., … Carputo, D. (2017). Subfunctionalization of duplicate MYB genes in Solanum commersonii generated the cold-induced ScAN2 and the anthocyanin regulator ScAN1. Plant, Cell & Environment, 41(5), 1038-1051. doi:10.1111/pce.12966D’Antuono, L. F., Elementi, S., & Neri, R. (2008). Glucosinolates in Diplotaxis and Eruca leaves: Diversity, taxonomic relations and applied aspects. Phytochemistry, 69(1), 187-199. doi:10.1016/j.phytochem.2007.06.019D’Antuono, L. F., Elementi, S., & Neri, R. (2009). Exploring new potential health-promoting vegetables: glucosinolates and sensory attributes of rocket salads and relatedDiplotaxisandErucaspecies. Journal of the Science of Food and Agriculture, 89(4), 713-722. doi:10.1002/jsfa.3507Di Gioia, F., Avato, P., Serio, F., & Argentieri, M. P. (2018). Glucosinolate profile of Eruca sativa, Diplotaxis tenuifolia and Diplotaxis erucoides grown in soil and soilless systems. Journal of Food Composition and Analysis, 69, 197-204. doi:10.1016/j.jfca.2018.01.022Egea-Gilabert, C., Fernández, J. A., Migliaro, D., Martínez-Sánchez, J. J., & Vicente, M. J. (2009). Genetic variability in wild vs. cultivated Eruca vesicaria populations as assessed by morphological, agronomical and molecular analyses. Scientia Horticulturae, 121(3), 260-266. doi:10.1016/j.scienta.2009.02.020Egea-Gilabert, C., Niñirola, D., Conesa, E., Candela, M. E., & Fernández, J. A. (2013). Agronomical use as baby leaf salad of Silene vulgaris based on morphological, biochemical and molecular traits. Scientia Horticulturae, 152, 35-43. doi:10.1016/j.scienta.2013.01.018Egea-Gilabert, C., Ruiz-Hernández, M. V., Parra, M. Á., & Fernández, J. A. (2014). Characterization of purslane (Portulaca oleracea L.) accessions: Suitability as ready-to-eat product. Scientia Horticulturae, 172, 73-81. doi:10.1016/j.scienta.2014.03.051Figàs, M. R., Prohens, J., Casanova, C., Fernández-de-Córdova, P., & Soler, S. (2018). Variation of morphological descriptors for the evaluation of tomato germplasm and their stability across different growing conditions. Scientia Horticulturae, 238, 107-115. doi:10.1016/j.scienta.2018.04.039Figàs, M. R., Prohens, J., Raigón, M. D., Pereira-Dias, L., Casanova, C., García-Martínez, M. D., … Soler, S. (2018). Insights Into the Adaptation to Greenhouse Cultivation of the Traditional Mediterranean Long Shelf-Life Tomato Carrying the alc Mutation: A Multi-Trait Comparison of Landraces, Selections, and Hybrids in Open Field and Greenhouse. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01774Guarrera, P. M., & Savo, V. (2016). Wild food plants used in traditional vegetable mixtures in Italy. Journal of Ethnopharmacology, 185, 202-234. doi:10.1016/j.jep.2016.02.050Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4-10. doi:10.1016/j.wace.2015.08.001Martínez-Laborde, J. B., Pita-Villamil, J. M., & Pérez-García, F. (2007). Short communication. Secondary dormancy in Diplotaxis erucoides: a possible adaptative strategy as an annual weed. Spanish Journal of Agricultural Research, 5(3), 402. doi:10.5424/sjar/2007053-265Metsalu, T., & Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43(W1), W566-W570. doi:10.1093/nar/gkv468Rodríguez-Burruezo, A., Prohens, J., & Nuez, F. (2002). Genetic Analysis of Quantitative Traits in Pepino (Solanum muricatum) in Two Growing Seasons. Journal of the American Society for Horticultural Science, 127(2), 271-278. doi:10.21273/jashs.127.2.271Roshanak, S., Rahimmalek, M., & Goli, S. A. H. (2015). Evaluation of seven different drying treatments in respect to total flavonoid, phenolic, vitamin C content, chlorophyll, antioxidant activity and color of green tea (Camellia sinensis or C. assamica) leaves. Journal of Food Science and Technology, 53(1), 721-729. doi:10.1007/s13197-015-2030-xStagnari, F., Di Mattia, C., Galieni, A., Santarelli, V., D’Egidio, S., Pagnani, G., & Pisante, M. (2018). Light quantity and quality supplies sharply affect growth, morphological, physiological and quality traits of basil. Industrial Crops and Products, 122, 277-289. doi:10.1016/j.indcrop.2018.05.073Stommel, J. R., Whitaker, B. D., Haynes, K. G., & Prohens, J. (2015). Genotype × environment interactions in eggplant for fruit phenolic acid content. Euphytica, 205(3), 823-836. doi:10.1007/s10681-015-1415-2Taranto, F., Francese, G., Di Dato, F., D’Alessandro, A., Greco, B., Onofaro Sanajà, V., … Tripodi, P. (2016). Leaf Metabolic, Genetic, and Morphophysiological Profiles of Cultivated and Wild Rocket Salad (Eruca and Diplotaxis Spp.). Journal of Agricultural and Food Chemistry, 64(29), 5824-5836. doi:10.1021/acs.jafc.6b01737Voss-Fels, K., & Snowdon, R. J. (2015). Understanding and utilizing crop genome diversity via high-resolution genotyping. Plant Biotechnology Journal, 14(4), 1086-1094. doi:10.1111/pbi.1245

    Consumers acceptance and volatile profile of wall rocket (Diplotaxis erucoides)

    Full text link
    [EN] Wall rocket (Diplotaxis erucoides) is a wild edible herb traditionally consumed in the Mediterranean regions with a characteristic, pungent flavour. However, little is known about its acceptance as a potential new crop. In the present study, an hedonic test with 98 volunteers was performed in order to evaluate the potential of wall rocket as a new crop. Three products were tested corresponding to microgreens, seedlings and baby-leaves. The volatile constituents were also studied due to their probable influence on acceptance, and compared to Dijon's mustard and wasabi. The degree of acceptance was mainly related to taste and pungency. Microgreens were well accepted, whereas seedlings and baby-leaves were mainly appreciated by individuals that enjoy pungent tastes. The purchase intent was also highly related to the acceptance of taste and pungency. The volatiles profile revealed that wall rocket was rich in allyl isothiocyanate, like mustard and wasabi. This compound may be greatly responsible of the relationship between the acceptance of mustard, wasabi and wall rocket. Microgreens displayed the highest levels of isothiocyanates, although the quantity of product tested by panellists did not probably allow the appreciation of such compounds. In baby-leaves, a significant decrease in isothiocyanates GC area and relative abundances was observed. These results suggest that wall rocket microgreens would be accepted by a significant proportion of the general public since pungency is lowly perceived in the product, despite its high levels of isothiocyanates. By contrast, baby-leaves may become a crop for a cohort of consumers that enjoy pungent flavours.C. Guijarro-Real thanks the Ministerio de Educacion, Cultura y Deporte of Spain (MECD) for its financial support with a PhD grant (FPU14-06798). Authors also thank Dr. A.M. Adalid and Dr. C.K. Pires for support in the tasting session, and Ms. E. Moreno for assistance with the GC-MS analysis.Guijarro-Real, C.; Prohens Tomás, J.; Rodríguez Burruezo, A.; Fita, A. (2020). Consumers acceptance and volatile profile of wall rocket (Diplotaxis erucoides). Food Research International. 132:1-9. https://doi.org/10.1016/j.foodres.2020.109008S19132Agneta, R., Lelario, F., De Maria, S., Möllers, C., Bufo, S. A., & Rivelli, A. R. (2014). Glucosinolate profile and distribution among plant tissues and phenological stages of field-grown horseradish. Phytochemistry, 106, 178-187. doi:10.1016/j.phytochem.2014.06.019Angelino, D., Dosz, E. B., Sun, J., Hoeflinger, J. L., Van Tassell, M. L., Chen, P., … Jeffery, E. H. (2015). Myrosinase-dependent and –independent formation and control of isothiocyanate products of glucosinolate hydrolysis. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00831Bell, L., Methven, L., Signore, A., Oruna-Concha, M. J., & Wagstaff, C. (2017). Analysis of seven salad rocket (Eruca sativa) accessions: The relationships between sensory attributes and volatile and non-volatile compounds. Food Chemistry, 218, 181-191. doi:10.1016/j.foodchem.2016.09.076Bell, L., Methven, L., & Wagstaff, C. (2017). The influence of phytochemical composition and resulting sensory attributes on preference for salad rocket (Eruca sativa) accessions by consumers of varying TAS2R38 diplotype. Food Chemistry, 222, 6-17. doi:10.1016/j.foodchem.2016.11.153Bell, L., Oloyede, O. O., Lignou, S., Wagstaff, C., & Methven, L. (2018). Taste and Flavor Perceptions of Glucosinolates, Isothiocyanates, and Related Compounds. Molecular Nutrition & Food Research, 62(18), 1700990. doi:10.1002/mnfr.201700990Bell, L., Spadafora, N. D., Müller, C. T., Wagstaff, C., & Rogers, H. J. (2016). Use of TD-GC–TOF-MS to assess volatile composition during post-harvest storage in seven accessions of rocket salad (Eruca sativa). Food Chemistry, 194, 626-636. doi:10.1016/j.foodchem.2015.08.043Bell, L., & Wagstaff, C. (2017). Enhancement Of Glucosinolate and Isothiocyanate Profiles in Brassicaceae Crops: Addressing Challenges in Breeding for Cultivation, Storage, and Consumer-Related Traits. Journal of Agricultural and Food Chemistry, 65(43), 9379-9403. doi:10.1021/acs.jafc.7b03628Bell, L., Yahya, H. N., Oloyede, O. O., Methven, L., & Wagstaff, C. (2017). Changes in rocket salad phytochemicals within the commercial supply chain: Glucosinolates, isothiocyanates, amino acids and bacterial load increase significantly after processing. Food Chemistry, 221, 521-534. doi:10.1016/j.foodchem.2016.11.154Bennett, R. N., Rosa, E. A. S., Mellon, F. A., & Kroon, P. A. (2006). Ontogenic Profiling of Glucosinolates, Flavonoids, and Other Secondary Metabolites in Eruca sativa (Salad Rocket), Diplotaxis erucoides (Wall Rocket), Diplotaxis tenuifolia (Wild Rocket), and Bunias orientalis (Turkish Rocket). Journal of Agricultural and Food Chemistry, 54(11), 4005-4015. doi:10.1021/jf052756tBonasia, A., Lazzizera, C., Elia, A., & Conversa, G. (2017). Nutritional, Biophysical and Physiological Characteristics of Wild Rocket Genotypes As Affected by Soilless Cultivation System, Salinity Level of Nutrient Solution and Growing Period. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.00300CARDELLO, A. V., & SCHUTZ, H. G. (2004). RESEARCH NOTE NUMERICAL SCALE-POINT LOCATIONS FOR CONSTRUCTING THE LAM (LABELED AFFECTIVE MAGNITUDE) SCALE. Journal of Sensory Studies, 19(4), 341-346. doi:10.1111/j.1745-459x.2004.tb00152.xCavaiuolo, M., & Ferrante, A. (2014). Nitrates and Glucosinolates as Strong Determinants of the Nutritional Quality in Rocket Leafy Salads. Nutrients, 6(4), 1519-1538. doi:10.3390/nu6041519D’Antuono, L. F., Elementi, S., & Neri, R. (2008). Glucosinolates in Diplotaxis and Eruca leaves: Diversity, taxonomic relations and applied aspects. Phytochemistry, 69(1), 187-199. doi:10.1016/j.phytochem.2007.06.019D’Antuono, L. F., Elementi, S., & Neri, R. (2009). Exploring new potential health-promoting vegetables: glucosinolates and sensory attributes of rocket salads and relatedDiplotaxisandErucaspecies. Journal of the Science of Food and Agriculture, 89(4), 713-722. doi:10.1002/jsfa.3507Di Gioia, F., Avato, P., Serio, F., & Argentieri, M. P. (2018). Glucosinolate profile of Eruca sativa, Diplotaxis tenuifolia and Diplotaxis erucoides grown in soil and soilless systems. Journal of Food Composition and Analysis, 69, 197-204. doi:10.1016/j.jfca.2018.01.022Dinkova-Kostova, A. T., & Kostov, R. V. (2012). Glucosinolates and isothiocyanates in health and disease. Trends in Molecular Medicine, 18(6), 337-347. doi:10.1016/j.molmed.2012.04.003Dinnella, C., Torri, L., Caporale, G., & Monteleone, E. (2014). An exploratory study of sensory attributes and consumer traits underlying liking for and perceptions of freshness for ready to eat mixed salad leaves in Italy. Food Research International, 59, 108-116. doi:10.1016/j.foodres.2014.02.009Evans, R., & Irving, M. (2018). Forager. https://www.forager.org.uk/ (accessed 30th March 2019).Gols, R., van Dam, N. M., Reichelt, M., Gershenzon, J., Raaijmakers, C. E., Bullock, J. M., & Harvey, J. A. (2018). Seasonal and herbivore-induced dynamics of foliar glucosinolates in wild cabbage (Brassica oleracea). Chemoecology, 28(3), 77-89. doi:10.1007/s00049-018-0258-4Guarrera, P. M., & Savo, V. (2013). Perceived health properties of wild and cultivated food plants in local and popular traditions of Italy: A review. Journal of Ethnopharmacology, 146(3), 659-680. doi:10.1016/j.jep.2013.01.036Guarrera, P. M., & Savo, V. (2016). Wild food plants used in traditional vegetable mixtures in Italy. Journal of Ethnopharmacology, 185, 202-234. doi:10.1016/j.jep.2016.02.050Guijarro-Real, C., Adalid-Martínez, A. M., Aguirre, K., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2019). Growing Conditions Affect the Phytochemical Composition of Edible Wall Rocket (Diplotaxis erucoides). Agronomy, 9(12), 858. doi:10.3390/agronomy9120858Guijarro-Real, C., Adalid-Martínez, A. M., Gregori-Montaner, A., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2020). Factors affecting germination of Diplotaxis erucoides and their effect on selected quality properties of the germinated products. Scientia Horticulturae, 261, 109013. doi:10.1016/j.scienta.2019.109013Guijarro-Real, C., Rodríguez-Burruezo, A., Prohens, J., & Fita, A. (2018). Importance of the growing system in the leaf morphology of Diplotaxis erucoides. Acta Horticulturae, (1202), 25-32. doi:10.17660/actahortic.2018.1202.4Guijarro-Real, C., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2019). Potential of wall rocket (Diplotaxis erucoides) as a new crop: Influence of the growing conditions on the visual quality of the final product. Scientia Horticulturae, 258, 108778. doi:10.1016/j.scienta.2019.108778Guijarro-Real, C., Rodríguez-Burruezo, A., Prohens, J., Raigón, M. D., & Fita, A. (2019). HS-SPME analysis of the volatiles profile of water celery (Apium nodiflorum), a wild vegetable with increasing culinary interest. Food Research International, 121, 765-775. doi:10.1016/j.foodres.2018.12.054Huang, L., Li, B.-L., He, C.-X., Zhao, Y.-J., Yang, X.-L., Pang, B., … Shan, Y.-J. (2018). Sulforaphane inhibits human bladder cancer cell invasion by reversing epithelial-to-mesenchymal transition via directly targeting microRNA-200c/ZEB1 axis. Journal of Functional Foods, 41, 118-126. doi:10.1016/j.jff.2017.12.034Ishida, M., Hara, M., Fukino, N., Kakizaki, T., & Morimitsu, Y. (2014). Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breeding Science, 64(1), 48-59. doi:10.1270/jsbbs.64.48Licata, M., Tuttolomondo, T., Leto, C., Virga, G., Bonsangue, G., Cammalleri, I., … La Bella, S. (2016). A survey of wild plant species for food use in Sicily (Italy) – results of a 3-year study in four Regional Parks. Journal of Ethnobiology and Ethnomedicine, 12(1). doi:10.1186/s13002-015-0074-7López-Chillón, M. T., Carazo-Díaz, C., Prieto-Merino, D., Zafrilla, P., Moreno, D. A., & Villaño, D. (2019). Effects of long-term consumption of broccoli sprouts on inflammatory markers in overweight subjects. Clinical Nutrition, 38(2), 745-752. doi:10.1016/j.clnu.2018.03.006López-Gresa, M. P., Lisón, P., Campos, L., Rodrigo, I., Rambla, J. L., Granell, A., … Bellés, J. M. (2017). A Non-targeted Metabolomics Approach Unravels the VOCs Associated with the Tomato Immune Response against Pseudomonas syringae. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01188Łuczaj, Ł., Pieroni, A., Tardío, J., Pardo-de-Santayana, M., Sõukand, R., Svanberg, I., & Kalle, R. (2012). Wild food plant use in 21st century Europe: the disappearance of old traditions and the search for new cuisines involving wild edibles. Acta Societatis Botanicorum Poloniae, 81(4), 359-370. doi:10.5586/asbp.2012.031MA, Y., SONG, D., WANG, Z., JIANG, J., JIANG, T., CUI, F., & FAN, X. (2010). EFFECT OF ULTRAHIGH PRESSURE TREATMENT ON VOLATILE COMPOUNDS IN GARLIC. Journal of Food Process Engineering, 34(6), 1915-1930. doi:10.1111/j.1745-4530.2009.00502.xMetsalu, T., & Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43(W1), W566-W570. doi:10.1093/nar/gkv468Molina-Calle, M., Priego-Capote, F., & Luque de Castro, M. D. (2017). Headspace−GC–MS volatile profile of black garlic vs fresh garlic: Evolution along fermentation and behavior under heating. LWT, 80, 98-105. doi:10.1016/j.lwt.2017.02.010Moreno, E., Fita, A., González-Mas, M. C., & Rodríguez-Burruezo, A. (2012). HS-SPME study of the volatile fraction of Capsicum accessions and hybrids in different parts of the fruit. Scientia Horticulturae, 135, 87-97. doi:10.1016/j.scienta.2011.12.001Pasini, F., Verardo, V., Cerretani, L., Caboni, M. F., & D’Antuono, L. F. (2011). Rocket salad (Diplotaxis and Eruca spp.) sensory analysis and relation with glucosinolate and phenolic content. Journal of the Science of Food and Agriculture, 91(15), 2858-2864. doi:10.1002/jsfa.4535Pinela, J., Carvalho, A. M., & Ferreira, I. C. F. R. (2017). Wild edible plants: Nutritional and toxicological characteristics, retrieval strategies and importance for today’s society. Food and Chemical Toxicology, 110, 165-188. doi:10.1016/j.fct.2017.10.020Savio, A. L. V., da Silva, G. N., Camargo, E. A. de, & Salvadori, D. M. F. (2014). Cell cycle kinetics, apoptosis rates, DNA damage and TP53 gene expression in bladder cancer cells treated with allyl isothiocyanate (mustard essential oil). Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 762, 40-46. doi:10.1016/j.mrfmmm.2014.02.006SCHUTZ, H. G., & CARDELLO, A. V. (2001). A LABELED AFFECTIVE MAGNITUDE (LAM) SCALE FOR ASSESSING FOOD LIKING/DISLIKING. Journal of Sensory Studies, 16(2), 117-159. doi:10.1111/j.1745-459x.2001.tb00293.xSdiri, S., Rambla, J. L., Besada, C., Granell, A., & Salvador, A. (2017). Changes in the volatile profile of citrus fruit submitted to postharvest degreening treatment. Postharvest Biology and Technology, 133, 48-56. doi:10.1016/j.postharvbio.2017.07.001Shikov, A. N., Tsitsilin, A. N., Pozharitskaya, O. N., Makarov, V. G., & Heinrich, M. (2017). Traditional and Current Food Use of Wild Plants Listed in the Russian Pharmacopoeia. Frontiers in Pharmacology, 8. doi:10.3389/fphar.2017.00841Shin, T., Fujikawa, K., Moe, A. Z., & Uchiyama, H. (2018). Traditional knowledge of wild edible plants with special emphasis on medicinal uses in Southern Shan State, Myanmar. Journal of Ethnobiology and Ethnomedicine, 14(1). doi:10.1186/s13002-018-0248-1Xiao, Z., Lester, G. E., Luo, Y., & Wang, Q. (2012). Assessment of Vitamin and Carotenoid Concentrations of Emerging Food Products: Edible Microgreens. Journal of Agricultural and Food Chemistry, 60(31), 7644-7651. doi:10.1021/jf300459

    Influence of the Growing Conditions in the Content of Vitamin C in Diplotaxis erucoides

    Get PDF
    Diplotaxis erucoides is an edible plant with potential for marketing. Here, we analysed the influence of the growing conditions in this species, D. tenuifolia and Eruca sativa, and studied the relation among the ascorbic (AA) and dehydroascorbic (DHA) acid forms. Plants were grown in the late winter-spring season under two conditions, greenhouse and field. The contents in AA, DHA and vitamin C (VC) were analysed by HPLC. The content of VC and AA were, in general, remarkable higher in the plants grown in the field. On the other hand, the mean percentage of DHA was less than 11%, being in this case higher for plants grown in the greenhouse. Thus, growing this potential crop in the field seems a better option in order to increase the content in VC, being AA the main form present at the moment of gathering

    HS-SPME analysis of the volatiles profile of water celery (Apium nodiflorum), a wild vegetable with increasing culinary interest

    Full text link
    [EN] Water celery (Apium nodiflorum) is a wild plant traditionally harvested in some Mediterranean areas for being consumed raw. Despite its appreciated organoleptic properties, the aromatic profile of the fresh vegetable remains to be studied. In the present study, volatile compounds from five wild populations were extracted by the headspace-solid phase microextraction technique, analysed by gas cromatography-mass spectrometry, and compared to related crops. The wild species had a high number of aromatic compounds. It was rich in monoterpenes (49.2%), sesquiterpenes (39.4%) and phenylpropanoids (9.6%), with quantitative differences among populations, in absolute terms and relative abundance. On average, germacrene D was the main compound (16.6%), followed by allo-ocimene (11.9%) and limonene (11.1%). Only in one population, the levels of limonene were greater than those of germacrene D. Among phenylpropanoids, dillapiol displayed the highest levels, and co-occurred with myristicin in all populations except one. These differences may have a genetic component, which would indicate the possibility of establishing selection programmes for the development of water celery as a crop adapted to different market preferences. On the other hand, comparison with related crops revealed some similarities among individual volatiles present in the different crops, which would be responsible of the common aroma notes. However, water celery displayed a unique profile, which was in addition quantitatively richer than others. Thus, this differentiation may promote the use of water celery as a new crop.C. Guijarro-Real thanks the Ministerio de Educacion, Cultura y Deporte of Spain (MECD) for the financial support with a predoctoral FPU grant (FPU14-06798). Authors also thank Manuel Figueroa for his unvaluable ethnobotanical knowledge and advice, as well as his support in the survey of water celery in the Horta Nord shireGuijarro-Real, C.; Rodríguez Burruezo, A.; Prohens Tomás, J.; Raigón Jiménez, MD.; Fita, A. (2019). HS-SPME analysis of the volatiles profile of water celery (Apium nodiflorum), a wild vegetable with increasing culinary interest. Food Research International. 121:765-775. https://doi.org/10.1016/j.foodres.2018.12.05476577512

    Growing conditions affect the phytochemical composition of edible wall rocket (Diplotaxis erucoides)

    Full text link
    [EN] Wall rocket (Diplotaxis erucoides) is a wild vegetable with the potential to become a crop of high antioxidant quality. The main bioactive compounds include ascorbic acid (AA), sinigrin, and a high content of total phenolic compounds (TP). It also accumulates nitrates. Since these compounds are affected by environmental conditions, adequate crop management may enhance its quality. Eleven accessions of wall rocket were evaluated under field and greenhouse conditions during two cycles (winter and spring) and compared to Eruca sativa and Diplotaxis tenuifolia crops. The three species did not differ greatly. As an exception, sinigrin was only identified in wall rocket. For the within-species analysis, the results revealed a high effect of the growing system, but this was low among accessions. The highest contents of AA and TP were obtained under field conditions. In addition, the levels of nitrates were lower in this system. A negative correlation between nitrates and antioxidants was determined. As a counterpart, cultivation in the field¿winter environment significantly decreased the percentage of humidity (87%). These results are of relevance for the adaptation of wall rocket to different growing conditions and suggest that the field system enhances its quality. The low genotypic differences suggest that intra-species selections in breeding programs may consider other aspects with greater variation.C.G. is grateful to the Ministerio de Educacion, Cultura y Deporte of Spain (MECD) for the financial support by means of a predoctoral FPU grant (FPU14-06798). The authors also thank Ms. E. Moreno and Ms. M.D. Lerma for their help in the field tasks.Guijarro-Real, C.; Adalid-Martinez, AM.; Aguirre, K.; Prohens Tomás, J.; Rodríguez Burruezo, A.; Fita, A. (2019). Growing conditions affect the phytochemical composition of edible wall rocket (Diplotaxis erucoides). Agronomy. 9(12):1-14. https://doi.org/10.3390/agronomy9120858S114912Scientific Concepts of Functional Foods in Europe Consensus Document. (1999). British Journal of Nutrition, 81(4), S1-S27. doi:10.1017/s0007114599000471Pinela, J., Carvalho, A. M., & Ferreira, I. C. F. R. (2017). Wild edible plants: Nutritional and toxicological characteristics, retrieval strategies and importance for today’s society. Food and Chemical Toxicology, 110, 165-188. doi:10.1016/j.fct.2017.10.020Ceccanti, C., Landi, M., Benvenuti, S., Pardossi, A., & Guidi, L. (2018). Mediterranean Wild Edible Plants: Weeds or «New Functional Crops»? Molecules, 23(9), 2299. doi:10.3390/molecules23092299Guarrera, P. M., & Savo, V. (2013). Perceived health properties of wild and cultivated food plants in local and popular traditions of Italy: A review. Journal of Ethnopharmacology, 146(3), 659-680. doi:10.1016/j.jep.2013.01.036Serrasolses, G., Calvet-Mir, L., Carrió, E., D’Ambrosio, U., Garnatje, T., Parada, M., … Reyes-García, V. (2016). A Matter of Taste: Local Explanations for the Consumption of Wild Food Plants in the Catalan Pyrenees and the Balearic Islands1. Economic Botany, 70(2), 176-189. doi:10.1007/s12231-016-9343-1Guarrera, P. M., & Savo, V. (2016). Wild food plants used in traditional vegetable mixtures in Italy. Journal of Ethnopharmacology, 185, 202-234. doi:10.1016/j.jep.2016.02.050Licata, M., Tuttolomondo, T., Leto, C., Virga, G., Bonsangue, G., Cammalleri, I., … La Bella, S. (2016). A survey of wild plant species for food use in Sicily (Italy) – results of a 3-year study in four Regional Parks. Journal of Ethnobiology and Ethnomedicine, 12(1). doi:10.1186/s13002-015-0074-7Spadafora, N. D., Amaro, A. L., Pereira, M. J., Müller, C. T., Pintado, M., & Rogers, H. J. (2016). Multi-trait analysis of post-harvest storage in rocket salad (Diplotaxis tenuifolia) links sensorial, volatile and nutritional data. Food Chemistry, 211, 114-123. doi:10.1016/j.foodchem.2016.04.107Adikwu, E., & Deo, O. (2013). Hepatoprotective Effect of Vitamin C (Ascorbic Acid). Pharmacology &amp; Pharmacy, 04(01), 84-92. doi:10.4236/pp.2013.41012Molecular Basis of Nutrition and Aging. (2016). doi:10.1016/c2014-0-00388-7Procházková, D., Boušová, I., & Wilhelmová, N. (2011). Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 82(4), 513-523. doi:10.1016/j.fitote.2011.01.018Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. Journal of Nutritional Science, 5. doi:10.1017/jns.2016.41Mandl, J., Szarka, A., & Bánhegyi, G. (2009). Vitamin C: update on physiology and pharmacology. British Journal of Pharmacology, 157(7), 1097-1110. doi:10.1111/j.1476-5381.2009.00282.xGols, R., van Dam, N. M., Reichelt, M., Gershenzon, J., Raaijmakers, C. E., Bullock, J. M., & Harvey, J. A. (2018). Seasonal and herbivore-induced dynamics of foliar glucosinolates in wild cabbage (Brassica oleracea). Chemoecology, 28(3), 77-89. doi:10.1007/s00049-018-0258-4Bell, L., Oruna-Concha, M. J., & Wagstaff, C. (2015). Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC–MS: Highlighting the potential for improving nutritional value of rocket crops. Food Chemistry, 172, 852-861. doi:10.1016/j.foodchem.2014.09.116Dinkova-Kostova, A. T., & Kostov, R. V. (2012). Glucosinolates and isothiocyanates in health and disease. Trends in Molecular Medicine, 18(6), 337-347. doi:10.1016/j.molmed.2012.04.003Santamaria, P. (2005). Nitrate in vegetables: toxicity, content, intake and EC regulation. Journal of the Science of Food and Agriculture, 86(1), 10-17. doi:10.1002/jsfa.2351Schiattone, M. I., Viggiani, R., Di Venere, D., Sergio, L., Cantore, V., Todorovic, M., … Candido, V. (2018). Impact of irrigation regime and nitrogen rate on yield, quality and water use efficiency of wild rocket under greenhouse conditions. Scientia Horticulturae, 229, 182-192. doi:10.1016/j.scienta.2017.10.036Habermeyer, M., Roth, A., Guth, S., Diel, P., Engel, K.-H., Epe, B., … Eisenbrand, G. (2014). Nitrate and nitrite in the diet: How to assess their benefit and risk for human health. Molecular Nutrition & Food Research, 59(1), 106-128. doi:10.1002/mnfr.201400286Di Gioia, F., Avato, P., Serio, F., & Argentieri, M. P. (2018). Glucosinolate profile of Eruca sativa, Diplotaxis tenuifolia and Diplotaxis erucoides grown in soil and soilless systems. Journal of Food Composition and Analysis, 69, 197-204. doi:10.1016/j.jfca.2018.01.022Durazzo, A., Azzini, E., Lazzè, M., Raguzzini, A., Pizzala, R., & Maiani, G. (2013). Italian Wild Rocket [Diplotaxis Tenuifolia (L.) DC.]: Influence of Agricultural Practices on Antioxidant Molecules and on Cytotoxicity and Antiproliferative Effects. Agriculture, 3(2), 285-298. doi:10.3390/agriculture3020285Cavaiuolo, M., & Ferrante, A. (2014). Nitrates and Glucosinolates as Strong Determinants of the Nutritional Quality in Rocket Leafy Salads. Nutrients, 6(4), 1519-1538. doi:10.3390/nu6041519Oh, M.-M., Carey, E. E., & Rajashekar, C. B. (2009). Environmental stresses induce health-promoting phytochemicals in lettuce. Plant Physiology and Biochemistry, 47(7), 578-583. doi:10.1016/j.plaphy.2009.02.008Björkman, M., Klingen, I., Birch, A. N. E., Bones, A. M., Bruce, T. J. A., Johansen, T. J., … Stewart, D. (2011). Phytochemicals of Brassicaceae in plant protection and human health – Influences of climate, environment and agronomic practice. Phytochemistry, 72(7), 538-556. doi:10.1016/j.phytochem.2011.01.014Sogbohossou, E. O. D., Achigan-Dako, E. G., Maundu, P., Solberg, S., Deguenon, E. M. S., Mumm, R. H., … Schranz, M. E. (2018). A roadmap for breeding orphan leafy vegetable species: a case study of Gynandropsis gynandra (Cleomaceae). Horticulture Research, 5(1). doi:10.1038/s41438-017-0001-2Guijarro-Real, C., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2019). Potential of wall rocket (Diplotaxis erucoides) as a new crop: Influence of the growing conditions on the visual quality of the final product. Scientia Horticulturae, 258, 108778. doi:10.1016/j.scienta.2019.108778Guijarro-Real, C., Adalid-Martínez, A. M., Gregori-Montaner, A., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2020). Factors affecting germination of Diplotaxis erucoides and their effect on selected quality properties of the germinated products. Scientia Horticulturae, 261, 109013. doi:10.1016/j.scienta.2019.109013Cano, A., & Bermejo, A. (2011). Influence of rootstock and cultivar on bioactive compounds in citrus peels. Journal of the Science of Food and Agriculture, 91(9), 1702-1711. doi:10.1002/jsfa.4375Grosser, K., & van Dam, N. M. (2017). A Straightforward Method for Glucosinolate Extraction and Analysis with High-pressure Liquid Chromatography (HPLC). Journal of Visualized Experiments, (121). doi:10.3791/55425Pasini, F., Verardo, V., Cerretani, L., Caboni, M. F., & D’Antuono, L. F. (2011). Rocket salad (Diplotaxis and Eruca spp.) sensory analysis and relation with glucosinolate and phenolic content. Journal of the Science of Food and Agriculture, 91(15), 2858-2864. doi:10.1002/jsfa.4535Electron correlations in narrow energy bands. (1963). Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 276(1365), 238-257. doi:10.1098/rspa.1963.0204Guijarro-Real, C., Prohens, J., Rodriguez-Burruezo, A., Adalid-Martínez, A. M., López-Gresa, M. P., & Fita, A. (2019). Wild edible fool’s watercress, a potential crop with high nutraceutical properties. PeerJ, 7, e6296. doi:10.7717/peerj.6296Egea-Gilabert, C., Ruiz-Hernández, M. V., Parra, M. Á., & Fernández, J. A. (2014). Characterization of purslane (Portulaca oleracea L.) accessions: Suitability as ready-to-eat product. Scientia Horticulturae, 172, 73-81. doi:10.1016/j.scienta.2014.03.051Egea-Gilabert, C., Fernández, J. A., Migliaro, D., Martínez-Sánchez, J. J., & Vicente, M. J. (2009). Genetic variability in wild vs. cultivated Eruca vesicaria populations as assessed by morphological, agronomical and molecular analyses. Scientia Horticulturae, 121(3), 260-266. doi:10.1016/j.scienta.2009.02.020Figàs, M. R., Prohens, J., Raigón, M. D., Pereira-Dias, L., Casanova, C., García-Martínez, M. D., … Soler, S. (2018). Insights Into the Adaptation to Greenhouse Cultivation of the Traditional Mediterranean Long Shelf-Life Tomato Carrying the alc Mutation: A Multi-Trait Comparison of Landraces, Selections, and Hybrids in Open Field and Greenhouse. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01774Bell, L., & Wagstaff, C. (2017). Enhancement Of Glucosinolate and Isothiocyanate Profiles in Brassicaceae Crops: Addressing Challenges in Breeding for Cultivation, Storage, and Consumer-Related Traits. Journal of Agricultural and Food Chemistry, 65(43), 9379-9403. doi:10.1021/acs.jafc.7b03628Colonna, E., Rouphael, Y., Barbieri, G., & De Pascale, S. (2016). Nutritional quality of ten leafy vegetables harvested at two light intensities. Food Chemistry, 199, 702-710. doi:10.1016/j.foodchem.2015.12.068Weightman, R. M., Huckle, A. J., Roques, S. E., Ginsburg, D., & Dyer, C. J. (2012). Factors influencing tissue nitrate concentration in field-grown wild rocket (Diplotaxis tenuifolia) in southern England. Food Additives & Contaminants: Part A, 29(9), 1425-1435. doi:10.1080/19440049.2012.696215GUIJARRO-REAL, C., RODRÍGUEZ-BURRUEZO, A., PROHENS, J., ADALID-MARTÍNEZ, A. M., & FITA, A. (2017). Influence of the Growing Conditions in the Content of Vitamin C in Diplotaxis erucoides. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Horticulture, 74(2), 144. doi:10.15835/buasvmcn-hort:0011D’Antuono, L. F., Elementi, S., & Neri, R. (2008). Glucosinolates in Diplotaxis and Eruca leaves: Diversity, taxonomic relations and applied aspects. Phytochemistry, 69(1), 187-199. doi:10.1016/j.phytochem.2007.06.019Bennett, R. N., Rosa, E. A. S., Mellon, F. A., & Kroon, P. A. (2006). Ontogenic Profiling of Glucosinolates, Flavonoids, and Other Secondary Metabolites inEruca sativa(Salad Rocket),Diplotaxis erucoides(Wall Rocket),Diplotaxis tenuifolia(Wild Rocket), andBunias orientalis(Turkish Rocket). Journal of Agricultural and Food Chemistry, 54(11), 4005-4015. doi:10.1021/jf052756tSans, F. X., & Masalles, R. M. (1994). Life-history variation in the annual arable weed Diplotaxis erucoides (Cruciferae). Canadian Journal of Botany, 72(1), 10-19. doi:10.1139/b94-003Bonasia, A., Lazzizera, C., Elia, A., & Conversa, G. (2017). Nutritional, Biophysical and Physiological Characteristics of Wild Rocket Genotypes As Affected by Soilless Cultivation System, Salinity Level of Nutrient Solution and Growing Period. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.00300Fita, A., Rodríguez-Burruezo, A., Boscaiu, M., Prohens, J., & Vicente, O. (2015). Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00978Kissen, R., Eberl, F., Winge, P., Uleberg, E., Martinussen, I., & Bones, A. M. (2016). Effect of growth temperature on glucosinolate profiles in Arabidopsis thaliana accessions. Phytochemistry, 130, 106-118. doi:10.1016/j.phytochem.2016.06.003Steindal, A. L. H., Rødven, R., Hansen, E., & Mølmann, J. (2015). Effects of photoperiod, growth temperature and cold acclimatisation on glucosinolates, sugars and fatty acids in kale. Food Chemistry, 174, 44-51. doi:10.1016/j.foodchem.2014.10.129Salvatore, S., Pellegrini, N., Brenna, O. V., Del Rio, D., Frasca, G., Brighenti, F., & Tumino, R. (2005). Antioxidant Characterization of Some Sicilian Edible Wild Greens. Journal of Agricultural and Food Chemistry, 53(24), 9465-9471. doi:10.1021/jf051806rBianco, V. V., Santamaria, P., & Elia, A. (1998). NUTRITIONAL VALUE AND NITRATE CONTENT IN EDIBLE WILD SPECIES USED IN SOUTHERN ITALY. Acta Horticulturae, (467), 71-90. doi:10.17660/actahortic.1998.467.7Disciglio, G., Tarantino, A., Frabboni, L., Gagliardi, A., Giuliani, M. M., Tarantino, E., & Gatta, G. (2017). Qualitative characterization of cultivated and wild edible plants: mineral elements, phenols content and antioxidant capacity. Italian Journal of Agronomy, 11. doi:10.4081/ija.2017.1036Orsini, F., Maggio, A., Rouphael, Y., & De Pascale, S. (2016). «Physiological quality» of organically grown vegetables. Scientia Horticulturae, 208, 131-139. doi:10.1016/j.scienta.2016.01.033Król, A., Amarowicz, R., & Weidner, S. (2015). The effects of cold stress on the phenolic compounds and antioxidant capacity of grapevine (Vitis vinifera L.) leaves. Journal of Plant Physiology, 189, 97-104. doi:10.1016/j.jplph.2015.10.002Cardenas-Navarro, R., Adamowicz, S., & Robin, P. (1999). Nitrate accumulation in plants: a role for water. Journal of Experimental Botany, 50(334), 613-624. doi:10.1093/jxb/50.334.61

    Potential In Vitro Inhibition of Selected Plant Extracts against SARS-CoV-2 Chymotripsin-Like Protease (3CLPro) Activity

    Full text link
    [EN] Antiviral treatments inhibiting Severe acute respiratory syndrome coronavirus 2 (SARSCoV-2) replication may represent a strategy complementary to vaccination to fight the ongoing Coronavirus disease 19 (COVID-19) pandemic. Molecules or extracts inhibiting the SARS-CoV-2 chymotripsin-like protease (3CLPro) could contribute to reducing or suppressing SARS-CoV-2 replication. Using a targeted approach, we identified 17 plant products that are included in current and traditional cuisines as promising inhibitors of SARS-CoV-2 3CLPro activity. Methanolic extracts were evaluated in vitro for inhibition of SARS-CoV-2 3CLPro activity using a quenched fluorescence resonance energy transfer (FRET) assay. Extracts from turmeric (Curcuma longa) rhizomes, mustard (Brassica nigra) seeds, and wall rocket (Diplotaxis erucoides subsp. erucoides) at 500 ug mL-1 displayed significant inhibition of the 3CLPro activity, resulting in residual protease activities of 0.0%, 9.4%, and 14.9%, respectively. Using different extract concentrations, an IC50 value of 15.74 ug mL-1 was calculated for turmeric extract. Commercial curcumin inhibited the 3CLPro activity, but did not fully account for the inhibitory effect of turmeric rhizomes extracts, suggesting that other components of the turmeric extract must also play a main role in inhibiting the 3CLPro activity. Sinigrin, a major glucosinolate present in mustard seeds and wall rocket, did not have relevant 3CLPro inhibitory activity; however, its hydrolysis product allyl isothiocyanate had an IC50 value of 41.43 ug mL-1. The current study identifies plant extracts and molecules that can be of interest in the search for treatments against COVID-19, acting as a basis for future chemical, in vivo, and clinical trials.Guijarro-Real, C.; Plazas Ávila, MDLO.; Rodríguez Burruezo, A.; Prohens Tomás, J.; Fita, A. (2021). Potential In Vitro Inhibition of Selected Plant Extracts against SARS-CoV-2 Chymotripsin-Like Protease (3CLPro) Activity. Foods. 10(7):1-12. https://doi.org/10.3390/foods10071503S11210

    Volatile fraction of fools watercress (Apium nodiflorum) as a new spice herb and ingredient for salads

    Get PDF
    This work displays the preliminary results of a study of the volatile fraction of fool s watercress (FW) (Apium nodiflorum), an underutilized vegetable species with potential use for salads and as spice. A comparative study of the volatile fraction of FW samples from Northern Valencia periurban area and samples from relatives parsley and celery was performed by head-space solid phase microextraction (HS/SPME) and GC-MS analysis. The profile of FW was richer than the profile of celery and parsley and resulted as a mixture of those ones. Moreover, some volatiles like isothiocyanates were identified as specific of FW. Thus, the flavour of this species can be considered similar to its relatives but more intense and consequently, may be used in salads or even as spice herb.Guijarro Real, C.; Ribes Moya, AM.; Fita, A.; Prohens Tomás, J.; Rodríguez Burruezo, A. (2015). Volatile fraction of fools watercress (Apium nodiflorum) as a new spice herb and ingredient for salads. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca : Horticulture. 72(2):465-467. doi:10.15835/buasvmcn-hort:11645S46546772
    corecore