4,809 research outputs found

    A non Supersymmetric SO(10) Grand Unified Model for All the Physics below MGUTM_{GUT}

    Get PDF
    We present a renormalizable non supersymmetric Grand Unified SO(10) model which, at the price of a large fine tuning, is compatible with all compelling phenomenological requirements below the unification scale and thus realizes a minimal extension of the SM, unified in SO(10) and describing all known physics below MGUTM_{GUT}. These requirements include coupling unification at a large enough scale to be compatible with the bounds on proton decay; a Yukawa sector in agreement with all the data on quark and lepton masses and mixings and with leptogenesis as the origin of the baryon asymmetry of the Universe; an axion arising from the Higgs sector of the model, suitable to solve the strong CP problem and to account for the observed amount of Dark Matter. The above constraints imposed by the data are very stringent and single out a particular breaking chain with the Pati-Salam group at an intermediate scale MI∌1011M_I\sim10^{11} GeV.Comment: references added, minor changes in the text, version to appear in JHE

    Evaluating the impact of innovation incentives: evidence from an unexpected shortage of funds

    Get PDF
    To evaluate the effect of an R&D subsidy one needs to know what the subsidized firms would have done without the incentive. This paper studies an Italian programme of subsidies for the applied development of innovations, exploiting a discontinuity in programme financing due to an unexpected shortage of public money. To identify the effect of the programme, the study implements a regression discontinuity design and compares firms that applied for funding before and after the shortage occurred. The results indicate that the programme was not effective in stimulating innovative investment.R&D, public policy, evaluation

    On Sub-Propositional Fragments of Modal Logic

    Get PDF
    In this paper, we consider the well-known modal logics K\mathbf{K}, T\mathbf{T}, K4\mathbf{K4}, and S4\mathbf{S4}, and we study some of their sub-propositional fragments, namely the classical Horn fragment, the Krom fragment, the so-called core fragment, defined as the intersection of the Horn and the Krom fragments, plus their sub-fragments obtained by limiting the use of boxes and diamonds in clauses. We focus, first, on the relative expressive power of such languages: we introduce a suitable measure of expressive power, and we obtain a complex hierarchy that encompasses all fragments of the considered logics. Then, after observing the low expressive power, in particular, of the Horn fragments without diamonds, we study the computational complexity of their satisfiability problem, proving that, in general, it becomes polynomial

    Long-range Ising and Kitaev Models: Phases, Correlations and Edge Modes

    Get PDF
    We analyze the quantum phases, correlation functions and edge modes for a class of spin-1/2 and fermionic models related to the 1D Ising chain in the presence of a transverse field. These models are the Ising chain with anti-ferromagnetic long-range interactions that decay with distance rr as 1/rα1/r^\alpha, as well as a related class of fermionic Hamiltonians that generalise the Kitaev chain, where both the hopping and pairing terms are long-range and their relative strength can be varied. For these models, we provide the phase diagram for all exponents α\alpha, based on an analysis of the entanglement entropy, the decay of correlation functions, and the edge modes in the case of open chains. We demonstrate that violations of the area law can occur for αâ‰Č1\alpha \lesssim1, while connected correlation functions can decay with a hybrid exponential and power-law behaviour, with a power that is α\alpha-dependent. Interestingly, for the fermionic models we provide an exact analytical derivation for the decay of the correlation functions at every α\alpha. Along the critical lines, for all models breaking of conformal symmetry is argued at low enough α\alpha. For the fermionic models we show that the edge modes, massless for α≳1\alpha \gtrsim 1, can acquire a mass for α<1\alpha < 1. The mass of these modes can be tuned by varying the relative strength of the kinetic and pairing terms in the Hamiltonian. Interestingly, for the Ising chain a similar edge localization appears for the first and second excited states on the paramagnetic side of the phase diagram, where edge modes are not expected. We argue that, at least for the fermionic chains, these massive states correspond to the appearance of new phases, notably approached via quantum phase transitions without mass gap closure. Finally, we discuss the possibility to detect some of these effects in experiments with cold trapped ions.Comment: 15 pages, 8 figure

    Multiple-Edge-Fault-Tolerant Approximate Shortest-Path Trees

    Full text link
    Let GG be an nn-node and mm-edge positively real-weighted undirected graph. For any given integer f≄1f \ge 1, we study the problem of designing a sparse \emph{f-edge-fault-tolerant} (ff-EFT) σ\sigma{\em -approximate single-source shortest-path tree} (σ\sigma-ASPT), namely a subgraph of GG having as few edges as possible and which, following the failure of a set FF of at most ff edges in GG, contains paths from a fixed source that are stretched at most by a factor of σ\sigma. To this respect, we provide an algorithm that efficiently computes an ff-EFT (2∣F∣+1)(2|F|+1)-ASPT of size O(fn)O(f n). Our structure improves on a previous related construction designed for \emph{unweighted} graphs, having the same size but guaranteeing a larger stretch factor of 3(f+1)3(f+1), plus an additive term of (f+1)log⁥n(f+1) \log n. Then, we show how to convert our structure into an efficient ff-EFT \emph{single-source distance oracle} (SSDO), that can be built in O~(fm)\widetilde{O}(f m) time, has size O(fnlog⁥2n)O(fn \log^2 n), and is able to report, after the failure of the edge set FF, in O(∣F∣2log⁥2n)O(|F|^2 \log^2 n) time a (2∣F∣+1)(2|F|+1)-approximate distance from the source to any node, and a corresponding approximate path in the same amount of time plus the path's size. Such an oracle is obtained by handling another fundamental problem, namely that of updating a \emph{minimum spanning forest} (MSF) of GG after that a \emph{batch} of kk simultaneous edge modifications (i.e., edge insertions, deletions and weight changes) is performed. For this problem, we build in O(mlog⁥3n)O(m \log^3 n) time a \emph{sensitivity} oracle of size O(mlog⁥2n)O(m \log^2 n), that reports in O(k2log⁥2n)O(k^2 \log^2 n) time the (at most 2k2k) edges either exiting from or entering into the MSF. [...]Comment: 16 pages, 4 figure

    The Max-Distance Network Creation Game on General Host Graphs

    Full text link
    In this paper we study a generalization of the classic \emph{network creation game} in the scenario in which the nn players sit on a given arbitrary \emph{host graph}, which constrains the set of edges a player can activate at a cost of α≄0\alpha \geq 0 each. This finds its motivations in the physical limitations one can have in constructing links in practice, and it has been studied in the past only when the routing cost component of a player is given by the sum of distances to all the other nodes. Here, we focus on another popular routing cost, namely that which takes into account for each player its \emph{maximum} distance to any other player. For this version of the game, we first analyze some of its computational and dynamic aspects, and then we address the problem of understanding the structure of associated pure Nash equilibria. In this respect, we show that the corresponding price of anarchy (PoA) is fairly bad, even for several basic classes of host graphs. More precisely, we first exhibit a lower bound of Ω(n/(1+α))\Omega (\sqrt{ n / (1+\alpha)}) for any α=o(n)\alpha = o(n). Notice that this implies a counter-intuitive lower bound of Ω(n)\Omega(\sqrt{n}) for very small values of α\alpha (i.e., edges can be activated almost for free). Then, we show that when the host graph is restricted to be either kk-regular (for any constant k≄3k \geq 3), or a 2-dimensional grid, the PoA is still Ω(1+min⁥{α,nα})\Omega(1+\min\{\alpha, \frac{n}{\alpha}\}), which is proven to be tight for α=Ω(n)\alpha=\Omega(\sqrt{n}). On the positive side, if α≄n\alpha \geq n, we show the PoA is O(1)O(1). Finally, in the case in which the host graph is very sparse (i.e., ∣E(H)∣=n−1+k|E(H)|=n-1+k, with k=O(1)k=O(1)), we prove that the PoA is O(1)O(1), for any α\alpha.Comment: 17 pages, 4 figure

    Specializations and Generalizations of the Stackelberg Minimum Spanning Tree Game

    Full text link
    Let be given a graph G=(V,E)G=(V,E) whose edge set is partitioned into a set RR of \emph{red} edges and a set BB of \emph{blue} edges, and assume that red edges are weighted and form a spanning tree of GG. Then, the \emph{Stackelberg Minimum Spanning Tree} (\stack) problem is that of pricing (i.e., weighting) the blue edges in such a way that the total weight of the blue edges selected in a minimum spanning tree of the resulting graph is maximized. \stack \ is known to be \apx-hard already when the number of distinct red weights is 2. In this paper we analyze some meaningful specializations and generalizations of \stack, which shed some more light on the computational complexity of the problem. More precisely, we first show that if GG is restricted to be \emph{complete}, then the following holds: (i) if there are only 2 distinct red weights, then the problem can be solved optimally (this contrasts with the corresponding \apx-hardness of the general problem); (ii) otherwise, the problem can be approximated within 7/4+ϔ7/4 + \epsilon, for any ϔ>0\epsilon > 0. Afterwards, we define a natural extension of \stack, namely that in which blue edges have a non-negative \emph{activation cost} associated, and it is given a global \emph{activation budget} that must not be exceeded when pricing blue edges. Here, after showing that the very same approximation ratio as that of the original problem can be achieved, we prove that if the spanning tree of red edges can be rooted so as that any root-leaf path contains at most hh edges, then the problem admits a (2h+ϔ)(2h+\epsilon)-approximation algorithm, for any ϔ>0\epsilon > 0.Comment: 22 pages, 7 figure
    • 

    corecore