11 research outputs found

    Organotypical tissue cultures from adult murine colon as an in vitro model of intestinal mucosa

    Get PDF
    Together with animal experiments, organotypical cell cultures are important models for analyzing cellular interactions of the mucosal epithelium and pathogenic mechanisms in the gastrointestinal tract. Here, we introduce a three-dimensional culture model from the adult mouse colon for cell biological investigations in an in vivo-like environment. These explant cultures were cultured for up to 2 weeks and maintained typical characteristics of the intestinal mucosa, including a high-prismatic epithelium with specific epithelial cell-to-cell connections, a basal lamina and various connective tissue cell types, as analyzed with immunohistological and electron microscopic methods. The function of the epithelium was tested by treating the cultures with dexamethasone, which resulted in a strong upregulation of the serum- and glucocorticoid-inducible kinase 1 similar to that found in vivo. The culture system was investigated in infection experiments with the fungal pathogen Candida albicans. Wildtype but not Δcph1/Δefg1-knockout Candida adhered to, penetrated and infiltrated the epithelial barrier. The results demonstrate the potential usefulness of this intestinal in vitro model for studying epithelial cell-cell interactions, cellular signaling and microbiological infections in a three-dimensional cell arrangement

    Interaction effects of seed mass and temperature on germination in Australian species of Frankenia (Frankeniaceae)

    No full text
    The seed size and number theories have been proposed to explain the advantages of having many small versus a few large seeds in plants. In particular, seed germination is predicted to be shaped by temperature, and may differ for small and large seeds. In this study, we experimentally test germination at different temperatures in 12 species of arid zone plants in the genus Frankenia L. that differ in seed mass. Seed mass was categorized as "smaller-seeded species" versus "larger-seeded species" for analysis (six species per category). Many of these species co-occur geographically and hence experience similar abiotic conditions (unpredictable rainfall, extremes in temperature, poor soil conditions). The results demonstrated differences in germination as a result of the temperature*seed mass(species) interaction effect. There were significant differences in germination rates across seed mass categories during the first eight days of germination. Germination rates were higher in the larger-seeded species than the smaller-seeded species. Smaller-seeded species had lower germination success but had higher germination rates at lower temperatures, and had a more stringent temperature as a germination cue. These findings are discussed in the context of life-history strategies in arid zone plants. © Institute of Botany, Academy of Sciences of the Czech Republic 2008.Lyndlee C. Easton, Sonia Kleindorfe

    Functional perspectives on tropical tree demography and forest dynamics

    No full text
    Abstract Disentangling the processes that drive population, community and whole forest structure and dynamics is a challenge. It becomes a grand challenge in the tropics where there are a large number of species, small population sizes, less research infrastructure, and a relatively smaller number of researchers compared to the temperate zone. Tackling this grand challenge, we argue, requires detailed knowledge of the functioning of individuals and species. To this end, researchers frequently employ plant functional traits to study tree populations and communities. Here, we review this approach by first providing a basic background regarding the major trait axes generally of interest. We then discuss how these axes may be or have been applied from ecosystem to community and population studies. In doing so, we highlight where the functional trait research program has failed in tropical tree ecology and where it can be improved or strengthened. Finally, we provide a perspective regarding how functional trait and emerging ‘omics approaches can be integrated to address large questions facing the field. Our intention throughout is to provide an entryway into this literature for an early career researcher rather than a comprehensive review of all possible studies that have taken place in tropical forests

    Functional perspectives on tropical tree demography and forest dynamics

    No full text
    corecore