5 research outputs found

    Habitat Composition and Connectivity Predicts Bat Presence and Activity at Foraging Sites in a Large UK Conurbation

    Get PDF
    Background: Urbanization is characterized by high levels of sealed land-cover, and small, geometrically complex, fragmented land-use patches. The extent and density of urbanized land-use is increasing, with implications for habitat quality, connectivity and city ecology. Little is known about densification thresholds for urban ecosystem function, and the response of mammals, nocturnal and cryptic taxa are poorly studied in this respect. Bats (Chiroptera) are sensitive to changing urban form at a species, guild and community level, so are ideal model organisms for analyses of this nature. Methodology/Principal Findings: We surveyed bats around urban ponds in the West Midlands conurbation, United Kingdom (UK). Sites were stratified between five urban land classes, representing a gradient of built land-cover at the 1 km 2 scale. Models for bat presence and activity were developed using land-cover and land-use data from multiple radii around each pond. Structural connectivity of tree networks was used as an indicator of the functional connectivity between habitats. All species were sensitive to measures of urban density. Some were also sensitive to landscape composition and structural connectivity at different spatial scales. These results represent new findings for an urban area. The activity of Pipistrellus pipistrellus (Schreber 1774) exhibited a non-linear relationship with the area of built land-cover, being much reduced beyond the threshold of,60 % built surface. The presence of tree networks appears to mitigate the negative effects of urbanization for this species

    Accelerated increase in plant species richness on mountain summits is linked to warming

    No full text
    We thank D. Barolin, J. Birks, A. Björken, C. Björken, S. Dahle, U. Deppe, G. Dussassois, J. V. Ferrández, T. Gassner, S. Giovanettina, F. Giuntoli, Ø. Lunde Heggebø, K. Herz, A. Jost, K. Kallnik, W. Kapfer, T. Kronstad, H. Laukeland, S. Nießner, M. Olson, P. Roux-Fouillet, K. Schofield, M. Suen, D. Watson, J. Wells Abbott, J. Zaremba and numerous additional helpers for fieldwork support; P. Barancˇ ok, J. L. Benito Alonso, M. Camenisch, G. Coldea, J. Dick, M. Gottfried, G. Grabherr, J. I. Holten, J. Kollár, P. Larsson, M. Mallaun, O. Michelsen, U. Molau, M. Pus¸  cas¸ , T. Scheurer, P. Unterluggauer, L. Villar, G.-R. Walther, and numerous helpers for data originating from the GLORIA network13; C. Jenks for linguistic support; and the following institutions for funding. M.J.S.: Danish Carlsbergfondet (CF14-0148), EU Marie Sklodowska-Curie action (grant 707491). C.R., V.S., S.W.: Velux Foundation, Switzerland. C.R., V.S., S.W., J.-P.T., P.V.: Swiss Federal Office for the Environment (FOEN). A.K.: Swiss National Science Foundation (31003A_144011 to C.R.), Basler Stiftung für biologische Forschung, Switzerland. J.K.: Fram Centre, Norway (362202). J.K., J.-A.G., P.C., B.J.: Polish-Norwegian Research Programme of the Norwegian National Centre for Research and Development (Pol-Nor/196829/87/2013). O.F.-A., M.J.H., S.P.: Instituto de Estudios Altoaragoneses (Huesca, Spain). S.D.: Austrian Climate Research Programme (ACRP, project 368575: DISEQU-ALP). F.J.: Botanical Society of Britain & Ireland; Alpine Garden Society, UK. M.J.H.: Felix de Azara research grant (IBERSUMIT project, DPH, Spain). R.K.: Slovak Research and Development Agency (APVV 0866-12). S.N., D.G.: VILLUM Foundation’s Young Investigator Programme (VKR023456; Denmark). S.P.: Ramón y Cajal fellowship (RYC-2013-14164, Ministerio de Economía y Competitividad, Spain). J.-C.S.: European Research Council (ERC-2012-StG-310886-HISTFUNC); VILLUM Investigator project (VILLUM FONDEN grant 16549; Denmark). S.W.: WSL internal grant (201307N0678, Switzerland); EU FP7 Interact Transnational Access (AlpFlor Europe). S.W., S.B., F.J., M.J.H.: Swiss Botanical Society Alpine Flower Fund. Time and effort was supported by sDiv, the Synthesis Centre of iDiv, Germany (DFG FZT 118, sUMMITDiv working group).Peer reviewedPostprin

    Synaptic Organization and Plasticity in the Auditory System of the Deaf White Cat

    No full text
    corecore