23 research outputs found

    Antibiotic-induced release of small extracellular vesicles (exosomes) with surface-associated DNA

    Get PDF
    Recently, biological roles of extracellular vesicles (which include among others exosomes, microvesicles and apoptotic bodies) have attracted substantial attention in various fields of biomedicine. Here we investigated the impact of sustained exposure of cells to the fluoroquinolone antibiotic ciprofloxacin on the released extracellular vesicles. Ciprofloxacin is widely used in humans against bacterial infections as well as in cell cultures against Mycoplasma contamination. However, ciprofloxacin is an inducer of oxidative stress and mitochondrial dysfunction of mammalian cells. Unexpectedly, here we found that ciprofloxacin induced the release of both DNA (mitochondrial and chromosomal sequences) and DNA-binding proteins on the exofacial surfaces of small extracellular vesicles referred to in this paper as exosomes. Furthermore, a label-free optical biosensor analysis revealed DNA-dependent binding of exosomes to fibronectin. DNA release on the surface of exosomes was not affected any further by cellular activation or apoptosis induction. Our results reveal for the first time that prolonged low-dose ciprofloxacin exposure leads to the release of DNA associated with the external surface of exosomes

    Influence of autoignition delay time characteristics of different fuels on pressure waves and knock in reciprocating engines

    No full text
    The functional relationship of autoignition delay time with temperature and pressure is employed to derive the propagation velocities of autoignitive reaction fronts for particular reactivity gradients, once autoignition has been initiated. In the present study of a variety of premixtures, with different functional relationships, such gradients comprise fixed initial temperature gradients. The smaller is the ratio of the acoustic speed through the mixture to the localised velocity of the autoignitive front, the greater are the amplitude and frequency of the induced pressure wave. This might lead to damaging engine knock. At higher values of the ratio, the autoignition can be benign with only small over-pressures.This approach to the effects of autoignition is confirmed by its application to a variety of experimental studies involving:(i) Imposed temperature gradients in a rapid compression and expansion machine.(ii) Onset of knock in an engine with advancing spark timing.(iii) Development of autoignition at a single hot spot in an engine.(iv) Autoignition fronts initiated by several hot spots.There is much diversity in the effects that can be produced by different fuels in different ranges of temperature and pressure. Higher values of autoignitive propagation speeds lead to increasingly severe engine knock. Such effects cannot always be predicted from the Research and Motor octane numbers

    Fuel effects on knock, heat releases and CARS temperatures in a spark ignition engine

    No full text
    Net heat release, knock characteristics and temperature were derived from in-cylinder pressure and end-gas CARS measurements for different fuels in a single-cylinder engine. The maximum net heat release rate resulting from the final phase of autoignition is closely associated with knock intensity. Aromatic fuels have lower maximum heat release rates and lower knock intensities than expected from their octane number when compared to paraffinic fuels ; this is observed even when there is significant heating of the end-gas from pre-flame reactions. Leaner mixtures have lower combustion rates so that pressure development is slowed and hence ignition needs to be more advanced to get knock to occur as frequently as in a richer mixture. However, for a given frequency of knock occurrence, there is no significant difference in peak net heat release rates and hence in knock intensities for different mixture strengths

    Fuel octane effects in the partially premixed combustion regime in compression ignition engines

    No full text
    Previous work has showed that it may be advantageous to use fuels of lower cetane numbers compared to today's diesel fuels in compression ignition engines. The benefits come from the longer ignition delays that these fuels have. There is more time available for the fuel and air to mix before combustion starts which is favourable for achieving low emissions of NO x and smoke though premixing usually leads to higher emissions of CO and unburned hydrocarbons

    Evaluation of heat transfer correlations for HCCI engine modeling

    No full text
    Combustion in HCCI engines is a controlled auto-ignition of well-mixed fuel, air and residual gas. The thermal conditions of the combustion chamber are governed by chemical kinetics strongly coupled with heat transfer from the hot gas to the walls. The heat losses have a critical effect on HCCI ignition timing and burning rate, so it is essential to understand heat transfer process in the combustion chamber in the modeling of HCCI engines. In the present paper, a comparative analysis is performed to investigate the performance of well-known heat transfer correlations in an HCCI engine. The results from the existing correlations are compared with the experimental results obtained in a single-cylinder engine. Significant differences are observed between the heat transfer results obtained by using Woschni, Assanis and Hohenberg correlations
    corecore