47 research outputs found
Lymphoid Organ-Resident Dendritic Cells Exhibit Unique Transcriptional Fingerprints Based on Subset and Site
Lymphoid organ-resident DC subsets are thought to play unique roles in determining the fate of T cell responses. Recent studies focusing on a single lymphoid organ identified molecular pathways that are differentially operative in each DC subset and led to the assumption that a given DC subset would more or less exhibit the same genomic and functional profiles throughout the body. Whether the local milieu in different anatomical sites can also influence the transcriptome of DC subsets has remained largely unexplored. Here, we interrogated the transcriptional relationships between lymphoid organ-resident DC subsets from spleen, gut- and skin-draining lymph nodes, and thymus of C57BL/6 mice. For this purpose, major resident DC subsets including CD4 and CD8 DCs were sorted at high purity and gene expression profiles were compared using microarray analysis. This investigation revealed that lymphoid organ-resident DC subsets exhibit divergent genomic programs across lymphoid organs. Interestingly, we also found that transcriptional and biochemical properties of a given DC subset can differ between lymphoid organs for lymphoid organ-resident DC subsets, but not plasmacytoid DCs, suggesting that determinants of the tissue milieu program resident DCs for essential site-specific functions
Retinal vessel diameters and reactivity in diabetes mellitus and/or cardiovascular disease
Background: Retinal vessel calibre and vascular dilation/constriction in response to flicker light provocation may provide a measure distinguishing patients suffering from diabetes mellitus and/or cardiovascular disease. Methods: One hundred and sixteen age and sex matched patients with diabetes mellitus (DM), cardiovascular disease (CVD) and both DM and CVD (DM+CVD) underwent systemic and intraocular pressure measurements. Retinal vessel calibres were assessed using a validated computer-based program to compute central retinal artery and vein equivalents (CRVE) from monochromatic retinal images. Vessel dilation and constriction responses to flicker light provocation were assessed by continuous retinal vessel diameter recordings. Plasma endothelial markers von Willebrand factor (vWf) and soluble E selectin (sEsel) were measured by ELISA. Results: Retinal vessel calibres were comparable across groups but CRVE correlated significantly with disease duration in DM patients (r=0.57, p<0.001). Patients suffering DM only exhibited reduced arterial vasomotion at rest and reduced arterial constriction following flicker light induced vessel dilation compared to patients with CVD and those suffering both CVD+DM (p=0.030). Patients suffering from CVD+DM exhibited significant differences between each flicker cycle in regards to arterial maximum constriction (p=0.006) and time needed to reach arterial maximum dilation (p=0.004), whereas the other two groups did not show such inconsistencies between individual flicker cycles. vWf was raised in CVD+DM compared to the other two groups (pâ€0.02), whilst sEsel was raised in CVD+DM compared to DM alone (p=0.044). Conclusions: Dynamic retinal vascular calibres as obtained by continuous diameter measurements using flicker light provocation can reveal subtle differences between groups suffering from CVD with and without DM. This difference in reaction pattern and lack of arterial constriction in DM may provide a suitable marker to monitor progression
Retinal microvascular parameters are not associated with reduced renal function in a study of individuals with type 2 diabetes
Abstract The eye provides an opportunistic âwindowâ to view the microcirculation. There is published evidence of an association between retinal microvascular calibre and renal function measured by estimated glomerular filtration rate (eGFR) in individuals with diabetes mellitus. Beyond vascular calibre, few studies have considered other microvascular geometrical features. Here we report novel null findings for measures of vascular spread (vessel fractal dimension), tortuosity, and branching patterns and their relationship with renal function in type 2 diabetes over a mean of 3 years. We performed a nested case-control comparison of multiple retinal vascular parameters between individuals with type 2 diabetes and stable (non-progressors) versus declining (progressors) eGFR across two time points within a subset of 1072 participants from the GoDARTS study cohort. Retinal microvascular were measured using VAMPIRE 3.1 software. In unadjusted analyses and following adjustment for age, gender, systolic blood pressure, HbA1C, and diabetic retinopathy, no associations between baseline retinal vascular parameters and risk of eGFR progression were observed. Cross-sectional analysis of follow-up data showed a significant association between retinal arteriolar diameter and eGFR, but this was not maintained following adjustment. These findings are consistent with a lack of predictive capacity for progressive loss of renal function in type 2 diabetes
The relationship of systemic markers of renal function and vascular function with retinal blood vessel responses
Purpose: To test the hypothesis of a significant relationship between systemic markers of renal and vascular function (processes linked to cardiovascular disease and its development) and retinal microvascular function in diabetes and/or cardiovascular disease.Methods: Ocular microcirculatory function was measured in 116 patients with diabetes and/or cardiovascular disease using static and continuous retinal vessel responses to three cycles of flickering light. Endothelial function was evaluated by von Willebrand factor (vWf), endothelial microparticles and soluble E selectin, renal function by serum creatinine, creatinine clearance and estimated glomerular filtration rate (eGFR). HbA1c was used as a control index.Results: Central retinal vein equivalence and venous maximum dilation to flicker were linked to HbA1c (both p<0.05). Arterial reaction time was linked to serum creatinine (p=0.036) and eGFR (p=0.039), venous reaction time was linked to creatinine clearance (p=0.018). Creatinine clearance and eGFR were linked to arterial maximum dilatation (p<0.001 and p=0.003 respectively) and the dilatation amplitude (p=0.038 and p=0.048 respectively) responses in the third flicker cycle. Of venous responses to the first flicker cycle, HbA1c was linked to the maximum dilation response (p=0.004) and dilatation amplitude (p=0.017), vWf was linked to the maximum constriction response (p=0.016), and creatinine clearance to the baseline diameter fluctuation (p=0.029). In the second flicker cycle, dilatation amplitude was linked to serum creatinine (p=0.022). Conclusions: Several retinal blood vessel responses to flickering light are linked to glycaemia and renal function, but only one index is linked to endothelial function. Renal function must be considered when interpreting retinal vessel responses
Periastron Observations of TeV Gamma-Ray Emission from a Binary System with a 50-year Period
We report on observations of the pulsar/Be star binary system PSR J2032+4127/MT91 213 in the energy range between 100 GeV and 20 TeV with the Very Energetic Radiation Imaging Telescope Array and Major Atmospheric Gamma Imaging Cherenkov telescope arrays. The binary orbit has a period of approximately 50 years, with the most recent periastron occurring on 2017 November 13. Our observations span from 18 months prior to periastron to one month after. A new point-like gamma-ray source is detected, coincident with the location of PSR J2032+4127/MT91 213. The gamma-ray light curve and spectrum are well characterized over the periastron passage. The flux is variable over at least an order of magnitude, peaking at periastron, thus providing a firm association of the TeV source with the pulsar/Be star system. Observations prior to periastron show a cutoff in the spectrum at an energy around 0.5 TeV. This result adds a new member to the small population of known TeV binaries, and it identifies only the second source of this class in which the nature and properties of the compact object are firmly established. We compare the gamma-ray results with the light curve measured with the X-ray Telescope on board the Neil Gehrels Swift Observatory and with the predictions of recent theoretical models of the system. We conclude that significant revision of the models is required to explain the details of the emission that we have observed, and we discuss the relationship between the binary system and the overlapping steady extended source, TeV J2032+4130
Multiband variability studies and novel broadband SED modeling of Mrk 501 in 2009
Aims. We present an extensive study of the BL Lac object Mrk 501 based on a data set collected during the multi-instrument campaign spanning from 2009 March 15 to 2009 August 1, which includes, among other instruments, MAGIC, VERITAS, Whipple 10 m, and Fermi-LAT to cover the gamma-ray range from 0.1 GeV to 20 TeV; RXTE and Swift to cover wavelengths from UV to hard X-rays; and GASP-WEBT, which provides coverage of radio and optical wavelengths. Optical polarization measurements were provided for a fraction of the campaign by the Steward and St. Petersburg observatories. We evaluate the variability of the source and interband correlations, the gamma-ray flaring activity occurring in May 2009, and interpret the results within two synchrotron self-Compton (SSC) scenarios.Methods. The multiband variability observed during the full campaign is addressed in terms of the fractional variability, and the possible correlations are studied by calculating the discrete correlation function for each pair of energy bands where the significance was evaluated with dedicated Monte Carlo simulations. The space of SSC model parameters is probed following a dedicated grid-scan strategy, allowing for a wide range of models to be tested and offering a study of the degeneracy of model-to-data agreement in the individual model parameters, hence providing a less biased interpretation than the "single-curve SSC model adjustment" typically reported in the literature.Results. We find an increase in the fractional variability with energy, while no significant interband correlations of flux changes are found on the basis of the acquired data set. The SSC model grid-scan shows that the flaring activity around May 22 cannot be modeled adequately with a one-zone SSC scenario (using an electron energy distribution with two breaks), while it can be suitably described within a two (independent) zone SSC scenario. Here, one zone is responsible for the quiescent emission from the averaged 4.5-month observing period, while the other one, which is spatially separated from the first, dominates the flaring emission occurring at X-rays and very-high-energy (> 100 GeV, VHE) gamma-rays. The flaring activity from May 1, which coincides with a rotation of the electric vector polarization angle (EVPA), cannot be satisfactorily reproduced by either a one-zone or a two-independent-zone SSC model, yet this is partially affected by the lack of strictly simultaneous observations and the presence of large flux changes on sub-hour timescales (detected at VHE gamma rays).Conclusions. The higher variability in the VHE emission and lack of correlation with the X-ray emission indicate that, at least during the 4.5-month observing campaign in 2009, the highest energy (and most variable) electrons that are responsible for the VHE gamma rays do not make a dominant contribution to the similar to 1 keV emission. Alternatively, there could be a very variable component contributing to the VHE gamma-ray emission in addition to that coming from the SSC scenario. The studies with our dedicated SSC grid-scan show that there is some degeneracy in both the one-zone and the two-zone SSC scenarios probed, with several combinations of model parameters yielding a similar model-to-data agreement, and some parameters better constrained than others. The observed gamma-ray flaring activity, with the EVPA rotation coincident with the first gamma-ray flare, resembles those reported previously for low frequency peaked blazars, hence suggesting that there are many similarities in the flaring mechanisms of blazars with different jet properties
Somatic mutation of immunoglobulin VH6 genes in human infants
Infants respond to antigen by making antibody that is generally of low affinity for antigen. Somatic hypermutation of immunoglobulin genes, and selection of cells expressing mutations with improved affinity for antigen, are the molecular and cellular processes underlying the maturation of antibody affinity. We have reported previously that neonates and infants up to 2 months of age, including individuals undergoing strong immunological challenge, show very few mutated VH6 sequences, with low mutation frequencies in mutated sequences, and little evidence of selection. We have now examined immunoglobulin genes from healthy infants between 2 and 10 months old for mutation and evidence of selection. In this age group, the proportion of VH6 sequences which are mutated and the mutation frequency in mutated sequences increase with age. There is evidence of selection from 6 months old. These results indicate that the process of affinity maturation, which depends on cognate TâB cell interaction and functional germinal centres, is approaching maturity from 6 months old