20 research outputs found
Identification of stable reference genes for quantitative PCR in koalas
To better understand host and immune response to diseases, gene expression studies require identification of reference genes with stable expression for accurate normalisation. This study describes the identification and testing of reference genes with stable expression profiles in koala lymph node tissues across two genetically distinct koala populations. From the 25 most stable genes identified in transcriptome analysis, 11 genes were selected for verification using reverse transcription quantitative PCR, in addition to the commonly used ACTB and GAPDH genes. The expression data were analysed using stable genes statistical software - geNorm, BestKeeper, NormFinder, the comparative ΔCt method and RefFinder. All 13 genes showed relative stability in expression in koala lymph node tissues, however Tmem97 and Hmg20a were identified as the most stable genes across the two koala populations
The Effects of Biting and Pulling on the Forces Generated during Feeding in the Komodo Dragon (Varanus komodoensis)
In addition to biting, it has been speculated that the forces resulting from pulling on food items may also contribute to feeding success in carnivorous vertebrates. We present an in vivo analysis of both bite and pulling forces in Varanus komodoensis, the Komodo dragon, to determine how they contribute to feeding behavior. Observations of cranial modeling and behavior suggest that V. komodoensis feeds using bite force supplemented by pulling in the caudal/ventrocaudal direction. We tested these observations using force gauges/transducers to measure biting and pulling forces. Maximum bite force correlates with both body mass and total body length, likely due to increased muscle mass. Individuals showed consistent behaviors when biting, including the typical medial-caudal head rotation. Pull force correlates best with total body length, longer limbs and larger postcranial motions. None of these forces correlated well with head dimensions. When pulling, V. komodoensis use neck and limb movements that are associated with increased caudal and ventral oriented force. Measured bite force in Varanus komodoensis is similar to several previous estimations based on 3D models, but is low for its body mass relative to other vertebrates. Pull force, especially in the ventrocaudal direction, would allow individuals to hunt and deflesh with high success without the need of strong jaw adductors. In future studies, pull forces need to be considered for a complete understanding of vertebrate carnivore feeding dynamics
Bird-Like Anatomy, Posture, and Behavior Revealed by an Early Jurassic Theropod Dinosaur Resting Trace
BACKGROUND: Fossil tracks made by non-avian theropod dinosaurs commonly reflect the habitual bipedal stance retained in living birds. Only rarely-captured behaviors, such as crouching, might create impressions made by the hands. Such tracks provide valuable information concerning the often poorly understood functional morphology of the early theropod forelimb. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe a well-preserved theropod trackway in a Lower Jurassic ( approximately 198 million-year-old) lacustrine beach sandstone in the Whitmore Point Member of the Moenave Formation in southwestern Utah. The trackway consists of prints of typical morphology, intermittent tail drags and, unusually, traces made by the animal resting on the substrate in a posture very similar to modern birds. The resting trace includes symmetrical pes impressions and well-defined impressions made by both hands, the tail, and the ischial callosity. CONCLUSIONS/SIGNIFICANCE: The manus impressions corroborate that early theropods, like later birds, held their palms facing medially, in contrast to manus prints previously attributed to theropods that have forward-pointing digits. Both the symmetrical resting posture and the medially-facing palms therefore evolved by the Early Jurassic, much earlier in the theropod lineage than previously recognized, and may characterize all theropods
The epidemiology of enterococci
The enterococci are emerging as a significant cause of nosocomial infections, accounting for approximately 10 % of hospital acquired infections. They are found as normal inhabitants of the human gastrointestinal tract, but may also colonize the oropharynx, vagina, perineal region and soft tissue wounds of asymtomatic patients. Until recently, evidence indicated that most enterococcal infections arose from patients' own endogenous flora. Recent studies, however, suggest that exogeneous acquisition may occur and that person-to-person spread, probably on the hands of medical personnel, may be a significant mode of transmission of resistant enterococci within the hospital. The use of broad-spectrum antibiotics, especially cephalosporins, is another major factor in the increasing incidence of enterococcal infections. These findings suggest that barrier precautions, as applied with other resistant nosocomial pathogens, along with more judicial use of antibiotics may be beneficial in preventing nosocomial spread of resistant enterococci.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47899/1/10096_2005_Article_BF01963631.pd