25 research outputs found

    Offspring of Mothers Fed a High Fat Diet Display Hepatic Cell Cycle Inhibition and Associated Changes in Gene Expression and DNA Methylation

    Get PDF
    The association between an adverse early life environment and increased susceptibility to later-life metabolic disorders such as obesity, type 2 diabetes and cardiovascular disease is described by the developmental origins of health and disease hypothesis. Employing a rat model of maternal high fat (MHF) nutrition, we recently reported that offspring born to MHF mothers are small at birth and develop a postnatal phenotype that closely resembles that of the human metabolic syndrome. Livers of offspring born to MHF mothers also display a fatty phenotype reflecting hepatic steatosis and characteristics of non-alcoholic fatty liver disease. In the present study we hypothesised that a MHF diet leads to altered regulation of liver development in offspring; a derangement that may be detectable during early postnatal life. Livers were collected at postnatal days 2 (P2) and 27 (P27) from male offspring of control and MHF mothers (n = 8 per group). Cell cycle dynamics, measured by flow cytometry, revealed significant G0/G1 arrest in the livers of P2 offspring born to MHF mothers, associated with an increased expression of the hepatic cell cycle inhibitor Cdkn1a. In P2 livers, Cdkn1a was hypomethylated at specific CpG dinucleotides and first exon in offspring of MHF mothers and was shown to correlate with a demonstrable increase in mRNA expression levels. These modifications at P2 preceded observable reductions in liver weight and liver∶brain weight ratio at P27, but there were no persistent changes in cell cycle dynamics or DNA methylation in MHF offspring at this time. Since Cdkn1a up-regulation has been associated with hepatocyte growth in pathologic states, our data may be suggestive of early hepatic dysfunction in neonates born to high fat fed mothers. It is likely that these offspring are predisposed to long-term hepatic dysfunction

    Avenues for Investigating the Neural Crest and Its Derivatives in Non-model (Unconventional) Vertebrates: A Craniofacial Skeleton Perspective

    No full text
    One of the early, profound insights regarding the biology of the neural crest was the observation of its contribution to the skeletal structures of the cranium and jaws. The critical nature of these structures made the comparative analysis of the cranial neural crest and its derived structures essential investigative aims toward our understanding of the development and evolution of vertebrates and vertebrate-specific structures. Though classically applied to a relatively wide range of taxa in the nineteenth and early twentieth centuries, the application of traditional methodologies for complex comparative developmental and anatomical analyses subsequently become more limited by their time-consuming nature, resource scarcity, and a greater emphasis on the genetic and molecular regulation of patterning and morphogenesis in a select number of tractable model organisms. Recently, however, this trend has been reversed, and the value of genetic and molecular-based questions applied to non-model (unconventional) vertebrate organisms has been re-appreciated. This is particularly true of comparative investigations of cranial neural crest biology. Herein, we present methodologies for the analysis of the cranial neural crest and its structural derivatives employable in modern investigations of both model and unconventional vertebrate organisms
    corecore