108 research outputs found

    Relationship Bonds and Customer Loyalty: A Study Across Different Service Contexts

    Get PDF
    The benefits of customer relationship strategies are well known and somewhat established nowadays. Customer loyalty emerges as the crucial glue in developing a relational approach. However, relational bonds, which relate to customer loyalty, have not yet been fully explored. Also, there is little research that takes into account the effect of service types on customer relationships and bonding. This paper develops a conceptual framework based on previous literature with a complete set of different relational bonds and examines its influence on customer loyalty across search, experience and credence services through a survey-based empirical study, with a sample of 233 consumers. The results provide guidance to managers to differentiate customer relationship strategies according to each specific service context

    DNA-PK-Dependent RPA2 Hyperphosphorylation Facilitates DNA Repair and Suppresses Sister Chromatid Exchange

    Get PDF
    Hyperphosphorylation of RPA2 at serine 4 and serine 8 (S4, S8) has been used as a marker for activation of the DNA damage response. What types of DNA lesions cause RPA2 hyperphosphorylation, which kinase(s) are responsible for them, and what is the biological outcome of these phosphorylations, however, have not been fully investigated. In this study we demonstrate that RPA2 hyperphosphorylation occurs primarily in response to genotoxic stresses that cause high levels of DNA double-strand breaks (DSBs) and that the DNA-dependent protein kinase complex (DNA-PK) is responsible for the modifications in vivo. Alteration of S4, S8 of RPA2 to alanines, which prevent phosphorylations at these sites, caused increased mitotic entry with concomitant increases in RAD51 foci and homologous recombination. Taken together, our results demonstrate that RPA2 hyperphosphorylation by DNA-PK in response to DSBs blocks unscheduled homologous recombination and delays mitotic entry. This pathway thus permits cells to repair DNA damage properly and increase cell viability

    Androgen deprivation modulates the inflammatory response induced by irradiation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to determine whether radiation (RT)-induced inflammatory responses and organ damage might be modulated by androgen deprivation therapies.</p> <p>Methods</p> <p>The mRNA and tissue sections obtained from the lungs, intestines and livers of irradiated mice with or without androgen deprivation were analyzed by real-time PCR and histological analysis. Activation of NF-kappa B was examined by measuring nuclear protein levels in the intestine and lung 24 h after irradiation. We also examined the levels of cyclooxygenase-2 (COX-2), TGF-β1 and p-AKT to elucidate the related pathway responsible to irradiation (RT) -induced fibrosis.</p> <p>Results</p> <p>We found androgen deprivation by castration significantly augmented RT-induced inflammation, associated with the increase NF-κB activation and COX-2 expression. However, administration of flutamide had no obvious effect on the radiation-induced inflammation response in the lung and intestine. These different responses were probably due to the increase of RT-induced NF-κB activation and COX-2 expression by castration or lupron treatment. In addition, our data suggest that TGF-β1 and the induced epithelial-mesenchymal transition (EMT) via the PI3K/Akt signaling pathway may contribute to RT-induced fibrosis.</p> <p>Conclusion</p> <p>When irradiation was given to patients with total androgen deprivation, the augmenting effects on the RT-induced inflammation and fibrosis should take into consideration for complications associated with radiotherapy.</p

    Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1038/nature20136The West Antarctic Ice Sheet is one of the largest potential sources of rising sea levels. Over the past 40 years, glaciers flowing into the Amundsen Sea sector of the ice sheet have thinned at an accelerating rate, and several numerical models suggest that unstable and irreversible retreat of the grounding line—which marks the boundary between grounded ice and floating ice shelf—is underway. Understanding this recent retreat requires a detailed knowledge of grounding-line history, but the locations of the grounding line before the advent of satellite monitoring in the 1990s are poorly dated. In particular, a history of grounding-line retreat is required to understand the relative roles of contemporaneous ocean-forced change and of ongoing glacier response to an earlier perturbation in driving ice-sheet loss. Here we show that the present thinning and retreat of Pine Island Glacier in West Antarctica is part of a climatically forced trend that was triggered in the 1940s. Our conclusions arise from analysis of sediment cores recovered beneath the floating Pine Island Glacier ice shelf, and constrain the date at which the grounding line retreated from a prominent seafloor ridge. We find that incursion of marine water beyond the crest of this ridge, forming an ocean cavity beneath the ice shelf, occurred in 1945 (±12 years); final ungrounding of the ice shelf from the ridge occurred in 1970 (±4 years). The initial opening of this ocean cavity followed a period of strong warming of West Antarctica, associated with El Niño activity. Furthermore our results suggest that, even when climate forcing weakened, ice-sheet retreat continued.USDO

    Conidiation Color Mutants of Aspergillus fumigatus Are Highly Pathogenic to the Heterologous Insect Host Galleria mellonella

    Get PDF
    The greater wax moth Galleria mellonella has been widely used as a heterologous host for a number of fungal pathogens including Candida albicans and Cryptococcus neoformans. A positive correlation in pathogenicity of these yeasts in this insect model and animal models has been observed. However, very few studies have evaluated the possibility of applying this heterologous insect model to investigate virulence traits of the filamentous fungal pathogen Aspergillus fumigatus, the leading cause of invasive aspergillosis. Here, we have examined the impact of mutations in genes involved in melanin biosynthesis on the pathogenicity of A. fumigatus in the G. mellonella model. Melanization in A. fumigatus confers bluish-grey color to conidia and is a known virulence factor in mammal models. Surprisingly, conidial color mutants in B5233 background that have deletions in the defined six-gene cluster required for DHN-melanin biosynthesis caused enhanced insect mortality compared to the parent strain. To further examine and confirm the relationship between melanization defects and enhanced virulence in the wax moth model, we performed random insertional mutagenesis in the Af293 genetic background to isolate mutants producing altered conidia colors. Strains producing conidia of previously identified colors and of novel colors were isolated. Interestingly, these color mutants displayed a higher level of pathogenicity in the insect model compared to the wild type. Although some of the more virulent color mutants showed increased resistance to hydrogen peroxide, overall phenotypic characterizations including secondary metabolite production, metalloproteinase activity, and germination rate did not reveal a general mechanism accountable for the enhanced virulence of these color mutants observed in the insect model. Our observations indicate instead, that exacerbated immune response of the wax moth induced by increased exposure of PAMPs (pathogen-associated molecular patterns) may cause self-damage that results in increased mortality of larvae infected with the color mutants. The current study underscores the limitations of using this insect model for inferring the pathogenic potential of A. fumigatus strains in mammals, but also points to the importance of understanding the innate immunity of the insect host in providing insights into the pathogenicity level of different fungal strains in this model. Additionally, our observations that melanization defective color mutants demonstrate increased virulence in the insect wax moth, suggest the potential of using melanization defective mutants of native insect fungal pathogens in the biological control of insect populations

    Drivers of diversification and pluriactivity among smallholder farmers—evidence from Nigeria

    Get PDF
    Diversification and pluriactivity have become a norm among farm business owners (FBOs) due to persistent low farm income. This study applies the resource-based theory to examine drivers of diversification and livelihood income-oriented towards a sustainable livelihood. Our framework develops hypotheses about the impact of internal and external resources on livelihood choices at the household level. We use a survey of 480 rural Nigerian farmers (agripreneurs), applying a Multivariate Tobit to test our framework. We find that education plays the most significant role in all types of employment options. The more FBOs are educated, the more the likelihood that they will choose non-farm or wage employment. This study revealed that while the agriculture sector’s share of rural employment is declining, non-farm is on the increase. More so, there is a decline in farming among the young generation, marital status bias and gender influence in resource allocation. The socioeconomic (income and food security) and socio-cultural (employment and rural-urban migration) implications of rural sustainability linked to UN Development Goals have been highlighted and analysed in this article

    DNA damage checkpoint control in cells exposed to ionizing radiation

    No full text
    corecore