10 research outputs found

    The Lages diatremes: mineral composition and petrological implications

    No full text
    Chemical data of heavy minerals from Lages diatremes in southern Brazil have been studied with the aim of characterizing the sample source(s). Three groups of minerals are recognized: I) aluminian-chromian pyroxene, pyrope garnet and chromian spinel, which represent disaggregated fragments of spinel, spinel+garnet and garnet facies peridotite; II) low-Cr aluminian pyroxene that occurs as megacrysts are high pressure phases (7-12 kb) being crystallized from an alkaline-like evolving magma; III) low-Cr aluminian diopside of crustal origin. Evidence of carbonatitic cryptic metasomatic enrichment is shown by clinopyroxenes of Groups I and II. The data do not support a kimberlitic affinity as it has been suggested for the diatremes. Rather, they are interpreted as vents related to the alkaline magmatism affecting the area in Late Cretaceous. The alkaline parental magma of the pyroxene megacrysts was generated from a metasomatized mantle at garnet facies that incorporated fragments of the surrounding still fertile mantle. Presumably at spinel-facies level the magma began to fractionate the megacrysts, whose crystallization proceeded over a large range of falling pressure and temperature. The chemical similarities between Group III clinopyroxenes and those from the differentiated lithotypes indicate that the magma carried this mineral phase on its evolution, at crustal conditions, towards a more evolved alkaline composition. Still, a non-cognate origin for the Group III clinopyroxenes cannot be discarded.<br>Dados químicos de minerais pesados dos diatremas de Lages no sul do Brasil foram estudados com o propósito de caracterizar as fontes das rochas. Três grupos de minerais são reconhecidos: I) piroxênio aluminoso-cromífero, granada piropo e espinélio cromífero, representando fragmentos desagregados de espinélio, espinélio+granada e granada da fácies peridotito; II) piroxênio aluminoso com baixo Cr, correspondendo a megacristais, com as fases de alta pressão (7-12 kb) cristalizadas a partir de magma alcalino em evolução; III) diopsídio aluminoso com baixo Cr e origem crustal. Clinopiroxênios dos Grupos I e II mostram evidências de enriquecimento metassomático críptico de natureza carbonatítica. Os dados não confirmam a afinidade kimberlítica sugerida para esses diatremas. Ao contrário, eles são interpretados como condutos relacionados ao magmatismo alcalino que afetou a área no Cretáceo Superior. O magma parental alcalino dos megacristais de piroxênio foi originado a partir de um manto metassomatizado na fácies granada que aprisionou fragmentos do ainda fértil manto adjacente. Presumivelmente na fácies espinélio teve início o fracionamento dos megacristais, cuja cristalização se deu em condições de pressão e temperatura decrescentes. As similaridades entre os clinopiroxênios do Grupo III e aqueles dos litotipos mais diferenciados sugere que essa fase mineral foi transportada pelo magma no curso de sua evolução, em condições crustais, para uma composição alcalina mais evoluída. Ainda, uma formação não-cogenética para os clinopiroxênios do Grupo III não pode ser descartada

    Petrology, bulk-rock geochemistry, indicator mineral composition and zircon U–Pb geochronology of the end-cretaceous diamondiferous mainpur orangeites, Bastar Craton, Central India

    No full text
    The end-Cretaceous diamondiferous Mainpur orangeite field comprises six pipes (Behradih, Kodomali, Payalikhand, Jangara, Kosambura and Bajaghati) located at the NE margin of the Bastar craton, central India. The preservation of both diatreme (Behradih) and hypabyssal facies (Kodomali) in this domain implies differential erosion. The Behradih samples are pelletal and tuffisitic in their textural habit, whereas those of the Kodomali pipe have inequigranular texture and comprise aggregates of two generations of relatively fresh olivines. The Kosambura pipe displays high degrees of alteration and contamination with silicified macrocrysts and carbonated groundmass. Olivine, spinel and clinopyroxene in the Behradih and the Kodomali pipes share overlapping compositions, whereas the groundmass phlogopite and perovskite show conspicuous compositional differences. The bulk-rock geochemistry of both the Behradih and Kodomali pipes has a more fractionated nature compared to southern African orangeites. Incompatible trace elements and their ratios readily distinguish them from the Mesoproterozoic Wajrakarur (WKF) and the Narayanpet kimberlites (NKF) from the eastern Dharwar craton, southern India, and bring out their similarity in petrogenesis to southern African orangeites. The pyrope population in the Mainpur orangeites is dominated by the calcic-lherzolitic variety, with sub-calcic harzburgitic and eclogitic garnets in far lesser proportion. Garnet REE distribution patterns from the Behradih and Payalikhand pipes display “smooth” as well as “sinusoidal” chondrite-normalised patterns. They provide evidence for the presence of a compositionally layered end-Cretaceous sub-Bastar craton mantle, similar to that reported from many other cratons worldwide. The high logfO<sub>2</sub> of the Mainpur orangeite magma (&#916;NNO (nickel-nickel oxide) of +0.48 to +4.46 indicates that the redox state of the lithospheric mantle cannot be of first-order control for diamond potential and highlights the dominant role of other factors such as rapid magma transport. The highly diamondiferous nature, the abundance of calcic-lherzolitic garnets and highly oxidising conditions prevailing at the time of eruption make the Mainpur orangeites clearly “anomalous” compared to several other kimberlite pipes worldwide. U–Pb dating of zircon xenocrysts from the Behradih pipe yielded distinct Palaeoproterozoic ages with a predominant age around 2,450 Ma. The lack of Archean-aged zircons, in spite of the fact that the Bastar craton is the oldest continental nuclei in the Indian shield with an Eoarchaean crust of 3.5–3.6 Ga, could either be a reflection of the sampling process or of the modification of the sub-Bastar lithosphere by the invading Deccan plume-derived melts during the Late Cretaceous

    Structural Basis of Activation of Cys-Loop Receptors: the Extracellular–Transmembrane Interface as a Coupling Region

    No full text
    corecore