51 research outputs found
0.1 µm InP HEMT devices and MMICs for cryogenic low noise amplifiers from X-band to W-band
We present the TRW 0.1 µm InP HEMT MMIC production technology that has been developed and used for state-of-the-art cryogenic LNA applications. The 0.1 µm InP HEMT devices typically show cutoff frequency above 200 GHz and transconductance above 1000 mS/mm. Aspects of device design and fabrication are presented which impact important parameters including the InP HEMT device gain, gate leakage current, and parasitic capacitance. One example of state-of-the-art cryogenic MMIC performance is a W-band cryogenic MMIC LNA operated at 20 degrees Kelvin that shows above 23 dB gain and a noise temperature of 30 to 40 K (0.45 to 0.6 dB noise figure) over the band of 80-105 GHz
0.1 µm InP HEMT devices and MMICs for cryogenic low noise amplifiers from X-band to W-band
We present the TRW 0.1 µm InP HEMT MMIC production technology that has been developed and used for state-of-the-art cryogenic LNA applications. The 0.1 µm InP HEMT devices typically show cutoff frequency above 200 GHz and transconductance above 1000 mS/mm. Aspects of device design and fabrication are presented which impact important parameters including the InP HEMT device gain, gate leakage current, and parasitic capacitance. One example of state-of-the-art cryogenic MMIC performance is a W-band cryogenic MMIC LNA operated at 20 degrees Kelvin that shows above 23 dB gain and a noise temperature of 30 to 40 K (0.45 to 0.6 dB noise figure) over the band of 80-105 GHz
Irf4 is a positional and functional candidate gene for the control of serum IgM levels in the mouse
Natural IgM are involved in numerous immunological functions but the genetic factors that control the homeostasis of its
secretion and upholding remain unknown. Prompted by the finding that C57BL/6 mice had significantly lower serum levels of
IgM when compared with BALB/c mice, we performed a genome-wide screen and found that the level of serum IgM was
controlled by a QTL on chromosome 13 reaching the highest level of association at marker D13Mit266 (LOD scoreÂĽ3.54).
This locus was named IgMSC1 and covered a region encompassing the interferon-regulatory factor 4 gene (Irf4). The number
of splenic mature B cells in C57BL/6 did not differ from BALB/c mice but we found that low serum levels of IgM in C57BL/6 mice
correlated with lower frequency of IgM-secreting cells in the spleen and in the peritoneal cavity. These results suggested that
C57BL/6 mice have lower efficiency in late B-cell maturation, a process that is highly impaired in Irf4 knockout mice. In fact, we
also found reduced Irf4 gene expression in B cells of C57BL/6 mice. Thus, we propose Irf4 as a candidate for the IgMSC1
locus, which controls IgM homeostatic levels at the level of B-cell terminal differentiation
The development of TH2 responses from infancy to 4Â years of age and atopic sensitization in areas endemic for helminth infections
BACKGROUND: Helminth infections and allergies are associated with TH(2) responses. Whereas the development of TH(2) responses and allergic disorders in pediatric populations has been examined in affluent countries, no or little data exist from low income regions of the world. The aim of this study is to examine factors influencing the development of TH(2) responses of children born in areas endemic for helminth infections and to relate these factors to atopic sensitization at 4 years of age. METHODS: Data were collected from pregnant mothers on helminth infections, education and socioeconomic status (SES). Total IgE, IL-5 in response to mitogen, and helminth antigens were measured in children at 2, 5, 12, 24 and 48 months of age. Skin prick testing (SPT) and allergen-specific IgE were determined at 4 years of age. RESULTS: Strong TH(2) responses were seen at 5 months of age and increased with time. Although maternal filarial infection was associated with helminth-antigen specific TH(2) responses, it was low maternal education or SES but not helminth infection, which was associated with the development of high total IgE and PHA-induced IL-5. At 4 years of age when allergen reactivity was assessed by SPT, the high general TH(2) responses did not translate into higher prevalence of SPT. The risk factor for SPT reactivity was low maternal education which decreased the risk of SPT positivity to allergens (adjusted OR, 0.32; 95% CI, 0.12 – 0.87) independently of maternal filarial infection which tended to reduce the child’s risk for being SPT positive (adjusted OR, 0.35; 95% CI, 0.07 – 1.70). CONCLUSIONS: In areas endemic for helminths, potent TH(2) responses were seen early in life, but did not translate into a higher SPT reactivity to allergens. Therefore, in many parts of the world TH(2) responses in general and IgE in particular cannot be used for diagnosis of allergic diseases
Biphasic rise of serum immunoglobulins G and A and sex influence on serum immunoglobulin M in normal Chinese children
A study was conducted on 751 healthy children from child health clinics, kindergartens and schools, and 80 normal adults to establish reference ranges for serum immunoglobulins (Ig) G, A and M concentrations in normal Chinese. Serum IgG, IgA and IgM concentrations were determined by nephelometry. Serum IgG and IgA were shown to have a significant rise during the preschool age as well as at puberty with a plateau phase in between. This biphasic maturation profile has not been reported in Caucasians and the reasons for the observed difference have yet to be elucidated. Serum IgM concentrations were shown to be higher in females than in males, reaching significance in most age groups beyond 4 years of age. The difference between the two sexes in Chinese was of similar magnitude as that reported for Blacks and Caucasians, that is, 30%. Our findings support the hypothesis that the human X chromosome may carry quantitative genes for IgM.link_to_subscribed_fulltex
- …