36 research outputs found

    Lake Granbury and Lake Whitney Assessment Initiative

    Get PDF
    A team of Texas AgriLife Research, Baylor University and University of Texas at Arlington researchers studied the biology and ecology of Prymnesium parvum (golden algae) in Texas lakes using a three-fold approach that involved system-wide monitoring, experimentation at the microcosm and mesocosm scales, and mathematical modeling. The following are conclusions, to date, regarding this organism’s ecology and potential strategies for mitigation of blooms by this organism

    Enhancement of nonclassical properties of two qubits via deformed operators

    Full text link
    We explore the dynamics of two atoms interacting with a cavity field via deformed operators. Properties of the asymptotic regularization of entanglement measures proving, for example, purity cost, regularized fidelity and accuracy of information transfer are analyzed. We show that the robustness of a bipartite system having a finite number of quantum states vanishes at finite photon numbers, for arbitrary interactions between its constituents and with cavity field. Finally it is shown that the stability of the purity and the fidelity is improved in the absence of the deformation parameters

    Lake Granbury and Lake Whitney Assessment Initiative Final Scientific/Technical Report Summary

    No full text
    A team of Texas AgriLife Research, Baylor University and University of Texas at Arlington researchers studied the biology and ecology of Prymnesium parvum (golden algae) in Texas lakes using a three-fold approach that involved system-wide monitoring, experimentation at the microcosm and mesocosm scales, and mathematical modeling. The following are conclusions, to date, regarding this organism’s ecology and potential strategies for mitigation of blooms by this organism. In-lake monitoring revealed that golden algae are present throughout the year, even in lakes where blooms do not occur. Compilation of our field monitoring data with data collected by Texas Parks and Wildlife and Brazos River Authority (a period spanning a decade) revealed that inflow and salinity variables affect bloom formations. Thresholds for algae populations vary per lake, likely due to adaptations to local conditions, and also to variations in lake-basin morphometry, especially the presence of coves that may serve as hydraulic storage zones for P. parvum populations. More specifically, our in-lake monitoring showed that the highly toxic bloom that occurred in Lake Granbury in the winter of 2006/2007 was eliminated by increased river inflow events. The bloom was flushed from the system. The lower salinities that resulted contributed to golden algae not blooming in the following years. However, flushing is not an absolute requirement for bloom termination. Laboratory experiments have shown that growth of golden algae can occur at salinities ~1-2 psu but only when temperatures are also low. This helps to explain why blooms are possible during winter months in Texas lakes. Our in-lake experiments in Lake Whitney and Lake Waco, as well as our laboratory experiments, revealed that cyanobacteria, or some other bacteria capable of producing algicides, were able to prevent golden algae from blooming. Identification of this organism is a high priority as it may be a key to managing golden algae blooms. Our numerical modeling results support the idea that cyanobacteria, through allelopathy, control the timing of golden algae blooms in Lake Granbury. The in-lake experiments in Lake Whitney and Lake Waco also revealed that as golden algae blooms develop, there are natural enemies (a species of rotifer, and a virus) that help slow the population growth. Again, better characterization of these organisms is a high priority as it may be key to managing golden algae blooms. Our laboratory and in-lake experiments and field monitoring have shown that nutrient additions will remove toxicity and prevent golden algae from blooming. In fact, other algae displace the golden algae after nutrient additions. Additions of ammonia are particularly effective, even at low doses (much lower than what is employed in fish hatchery ponds). Application of ammonia in limited areas of lakes, such as in coves, should be explored as a management option. The laboratory experiments and field monitoring also show that the potency of toxins produced by P. parvum is greatly reduced when water pH is lower, closer to neutral levels. Application of mild acid to limited areas of lakes (but not to a level where acidic conditions are created), such as in coves, should be explored as a management option. Finally, our field monitoring and mathematical modeling revealed that flushing/dilution at high enough levels could prevent P. parvum from forming blooms and/or terminate existing blooms. This technique could work using deeper waters within a lake to flush the surface waters of limited areas of the same lakes, such as in coves and should be explored as a management option. In this way, water releases from upstream reservoirs would not be necessary and there would be no addition of nutrients in the lake

    Not Available

    No full text
    Not AvailableThe present study was undertaken to examine the antagonistic effect of root extracts of mycorrhizal plants on white root rot of apple, caused by Dematophora necatrix, in vitro at Central Institute of Temperate Horticulture-Regional Station, Mukteshwar, Nainital, Uttarakhand during 2009-10. The arbuscular-mycorrhizal fungi (AMF) species used were Sclerocystis dussi, Glomus intraradices, G. fasciculatum, G. bagyaraji, G. leptotichum, G. monosporum, Gigaspora margarita, and a mixed AMF culture. AMF cultures were multiplied on maize roots. Forty five-day old maize plants were harvested for their roots. The extracted root sap was added into culture medium and was inoculated with pathogen. Owing to presence of root extract of mycorrhizal maize plants, inhibited growth of Dematophora necatrix was noted under in vitro conditions. Root extracts of all the AMF treated plants exhibited antagonistic activity with 44.8-73.6% inhibition after 5 days of inoculation against white root rot.Not Availabl
    corecore