180 research outputs found

    Increased cholinergic contractions of jejunal smooth muscle caused by a high cholesterol diet are prevented by the 5-HT(4 )agonist – tegaserod

    Get PDF
    BACKGROUND: Excess cholesterol in bile and in blood is a major risk factor for the respective development of gallbladder disease and atherosclerosis. This lipid in excess negatively impacts the functioning of other smooth muscles, including the intestine. Serotonin is an important mediator of the contractile responses of the small intestine. Drugs targeting the serotonin receptor are used as prokinetic agents to manage intestinal motor disorders, in particular irritable bowel syndrome. Thus, tegaserod, acting on 5-HT(4 )receptor, ideally should obviate detrimental effects of excessive cholesterol on gastrointestinal smooth muscle. In this study we examined the effect of tegaserod on cholesterol-induced changes in the contractile responses of intestinal smooth muscle. METHODS: The effects of a high cholesterol (1%) diet on the in vitro contractile responses of jejunal longitudinal smooth muscle from Richardson ground squirrels to the cholinergic agonist carbachol were examined in the presence or absence of tetrodrodotoxin (TTX). Two groups of animals, fed either low (0.03%) or high cholesterol rat chow diet, were further divided into two subgroups and treated for 28 days with either vehicle or tegaserod. RESULTS: The high cholesterol diet increased, by nearly 2-fold, contractions of the jejunal longitudinal smooth muscle elicited by carbachol. These cholinergic contractions were mediated by muscarinic receptors since they were blocked by scopolamine, a muscarinic receptor antagonist, but not by the nicotinic receptor antagonist, hexamethonium. Tegaserod treatment, which did not affect cholinergic contractions of tissues from low cholesterol fed animals, abrogated the increase caused by the high cholesterol diet. With low cholesterol diet TTX enhanced carbachol-evoked contractions, whereas this action potential blocker did not affect the augmented cholinergic contractions seen with tissues from animals on the high cholesterol diet. Tegaserod-treatment removed the effects of a high cholesterol diet on neuronal muscarinic receptors, as the potentiating effect of TTX on carbachol-elicited contractions was maintained in these animals. CONCLUSION: A high cholesterol diet causes significant changes to cholinergic neurotransmission in the enteric nerves of the jejunum. The mechanisms by which these effects of cholesterol are reversed by tegaserod are unknown, but relate to removal of an inhibitory effect of cholesterol on enteric nerves

    Laxative effects of partially defatted flaxseed meal on normal and experimental constipated mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Constipation is a very common health problem in the world. Intake of sufficient amount of dietary fibers is a cornerstone in the prevention and treatment of constipation. As a traditional medicine, flaxseed has been used to treat constipation for centuries, but the controlled trials are rare. The purpose of the present study was to assess that whether partially defatted flaxseed meal (PDFM) has the potential role to facilitate fecal output in normal and experimental constipated mice.</p> <p>Methods</p> <p>After supplemented with 2.5%, 5% and 10% (w/w) PDFM (L-, M- and H -PDFM) for 14 days, the constipation models of mice were induced by atropine-diphenoxylate. The small intestinal transit rates, start time of defecation, amount of defecation and wet weight of feces were researched in normal and constipation model mice.</p> <p>Results</p> <p>M- and H-PDFM significantly increase small intestinal transit rates in constipation model mice. All dose of PDFM markedly shortened the start time of defecation and M- and H-PDFM significantly increase stool frequency and weight in both normal and constipation model mice.</p> <p>Conclusions</p> <p>PDFM may be a useful laxative to facilitate fecal output in normal and constipation conditions.</p

    Natural Variation in the Thermotolerance of Neural Function and Behavior due to a cGMP-Dependent Protein Kinase

    Get PDF
    Although it is acknowledged that genetic variation contributes to individual differences in thermotolerance, the specific genes and pathways involved and how they are modulated by the environment remain poorly understood. We link natural variation in the thermotolerance of neural function and behavior in Drosophila melanogaster to the foraging gene (for, which encodes a cGMP-dependent protein kinase (PKG)) as well as to its downstream target, protein phosphatase 2A (PP2A). Genetic and pharmacological manipulations revealed that reduced PKG (or PP2A) activity caused increased thermotolerance of synaptic transmission at the larval neuromuscular junction. Like synaptic transmission, feeding movements were preserved at higher temperatures in larvae with lower PKG levels. In a comparative assay, pharmacological manipulations altering thermotolerance in a central circuit of Locusta migratoria demonstrated conservation of this neuroprotective pathway. In this circuit, either the inhibition of PKG or PP2A induced robust thermotolerance of neural function. We suggest that PKG and therefore the polymorphism associated with the allelic variation in for may provide populations with natural variation in heat stress tolerance. for's function in behavior is conserved across most organisms, including ants, bees, nematodes, and mammals. PKG's role in thermotolerance may also apply to these and other species. Natural variation in thermotolerance arising from genes involved in the PKG pathway could impact the evolution of thermotolerance in natural populations

    Oxytocin and cholecystokinin secretion in women with colectomy

    Get PDF
    BACKGROUND: Cholecystokinin (CCK) concentrations in plasma have been shown to be significantly higher in colectomised subjects compared to healthy controls. This has been ascribed to reduced inhibition of CCK release from colon. In an earlier study CCK in all but one woman who was colectomised, induced release of oxytocin, a peptide present throughout the gastrointestinal (GI) tract. The aim of this study was thus to examine if colectomised women had a different oxytocin response to CCK compared to healthy controls. METHODS: Eleven women, mean age 34.4 ± 2.3 years, who had undergone colectomy because of ulcerative colitis or constipation were studied. Eleven age-matched healthy women served as controls. All subjects were fasted overnight and given 0.2 μg/kg body weight of CCK-8 i.v. in the morning. Samples were taken ten minutes and immediately before the injection, and 10, 20, 30, 45, 60, 90 and 120 min afterwards. Plasma was collected for measurement of CCK and oxytocin concentrations. RESULTS: The basal oxytocin and CCK concentrations in plasma were similar in the two groups. Intravenous injection of CCK increased the release of oxytocin from 1.31 ± 0.12 and 1.64 ± 0.19 pmol/l to 2.82 ± 0.35 and 3.26 ± 0.50 pmol/l in controls and colectomised women, respectively (p < 0.001). Given the short half-life of CCK-8 in plasma, the increased concentration following injection could not be demonstrated in the controls. On the other hand, in colectomised women, an increase of CCK in plasma was observed for up to 20 minutes after the injection, concentrations increasing from 1.00 ± 0.21 to a maximum of 1.81 ± 0.26 pmol/l (p < 0.002). CONCLUSION: CCK stimulates the release of oxytocin in women. There is no difference in plasma concentrations between colectomised and controls. However, colectomy seems to reduce the metabolic clearance of CCK. The hyperCCKemia in patients who had undergone colectomy is consequently not only dependent on CCK release, but may also depend on reduced clearance

    Up-regulation of brain-derived neurotrophic factor in primary afferent pathway regulates colon-to-bladder cross-sensitization in rat

    Get PDF
    Background In humans, inflammation of either the urinary bladder or the distal colon often results in sensory cross-sensitization between these organs. Limited information is known about the mechanisms underlying this clinical syndrome. Studies with animal models have demonstrated that activation of primary afferent pathways may have a role in mediating viscero-visceral cross-organ sensitization. Methods Colonic inflammation was induced by a single dose of tri-nitrobenzene sulfonic acid (TNBS) instilled intracolonically. The histology of the colon and the urinary bladder was examined by hematoxylin and eosin (H&E) stain. The protein expression of transient receptor potential (TRP) ion channel of the vanilloid type 1 (TRPV1) and brain-derived neurotrophic factor (BDNF) were examined by immunohistochemistry and/or western blot. The inter-micturition intervals and the quantity of urine voided were obtained from analysis of cystometrograms. Results At 3 days post TNBS treatment, the protein level of TRPV1 was increased by 2-fold (p \u3c 0.05) in the inflamed distal colon when examined with western blot. TRPV1 was mainly expressed in the axonal terminals in submucosal area of the distal colon, and was co-localized with the neural marker PGP9.5. In sensory neurons in the dorsal root ganglia (DRG), BDNF expression was augmented by colonic inflammation examined in the L1 DRG, and was expressed in TRPV1 positive neurons. The elevated level of BDNF in L1 DRG by colonic inflammation was blunted by prolonged pre-treatment of the animals with the neurotoxin resiniferatoxin (RTX). Colonic inflammation did not alter either the morphology of the urinary bladder or the expression level of TRPV1 in this viscus. However, colonic inflammation decreased the inter-micturition intervals and decreased the quantities of urine voided. The increased bladder activity by colonic inflammation was attenuated by prolonged intraluminal treatment with RTX or treatment with intrathecal BDNF neutralizing antibody. Conclusion Acute colonic inflammation increases bladder activity without affecting bladder morphology. Primary afferent-mediated BDNF up-regulation in the sensory neurons regulates, at least in part, the bladder activity during colonic inflammation

    PI3K and ERK-Induced Rac1 Activation Mediates Hypoxia-Induced HIF-1α Expression in MCF-7 Breast Cancer Cells

    Get PDF
    Hypoxia-inducible factor 1 (HIF-1α) expression induced by hypoxia plays a critical role in promoting tumor angiogenesis and metastasis. However, the molecular mechanisms underlying the induction of HIF-1α in tumor cells remain unknown.In this study, we reported that hypoxia could induce HIF-1α and VEGF expression accompanied by Rac1 activation in MCF-7 breast cancer cells. Blockade of Rac1 activation with ectopic expression of an inactive mutant form of Rac1 (T17N) or Rac1 siRNA downregulated hypoxia-induced HIF-1α and VEGF expression. Furthermore, Hypoxia increased PI3K and ERK signaling activity. Both PI3K inhibitor LY294002 and ERK inhibitor U0126 suppressed hypoxia-induced Rac1 activation as well as HIF-1α expression. Moreover, hypoxia treatment resulted in a remarkable production of reactive oxygen species (ROS). N-acetyl-L-cysteine, a scavenger of ROS, inhibited hypoxia-induced ROS generation, PI3K, ERK and Rac1 activation as well as HIF-1α expression.Taken together, our study demonstrated that hypoxia-induced HIF-1α expression involves a cascade of signaling events including ROS generation, activation of PI3K and ERK signaling, and subsequent activation of Rac1

    Perivascular Expression and Potent Vasoconstrictor Effect of Dynorphin A in Cerebral Arteries

    Get PDF
    BACKGROUND: Numerous literary data indicate that dynorphin A (DYN-A) has a significant impact on cerebral circulation, especially under pathophysiological conditions, but its potential direct influence on the tone of cerebral vessels is obscure. The aim of the present study was threefold: 1) to clarify if DYN-A is present in cerebral vessels, 2) to determine if it exerts any direct effect on cerebrovascular tone, and if so, 3) to analyze the role of κ-opiate receptors in mediating the effect. METHODOLOGY/PRINCIPAL FINDINGS: Immunohistochemical analysis revealed the expression of DYN-A in perivascular nerves of rat pial arteries as well as in both rat and human intraparenchymal vessels of the cerebral cortex. In isolated rat basilar and middle cerebral arteries (BAs and MCAs) DYN-A (1-13) and DYN-A (1-17) but not DYN-A (1-8) or dynorphin B (DYN-B) induced strong vasoconstriction in micromolar concentrations. The maximal effects, compared to a reference contraction induced by 124 mM K(+), were 115±6% and 104±10% in BAs and 113±3% and 125±9% in MCAs for 10 µM of DYN-A (1-13) and DYN-A (1-17), respectively. The vasoconstrictor effects of DYN-A (1-13) could be inhibited but not abolished by both the κ-opiate receptor antagonist nor-Binaltorphimine dihydrochloride (NORBI) and blockade of G(i/o)-protein mediated signaling by pertussis toxin. Finally, des-Tyr(1) DYN-A (2-13), which reportedly fails to activate κ-opiate receptors, induced vasoconstriction of 45±11% in BAs and 50±5% in MCAs at 10 µM, which effects were resistant to NORBI. CONCLUSION/SIGNIFICANCE: DYN-A is present in rat and human cerebral perivascular nerves and induces sustained contraction of rat cerebral arteries. This vasoconstrictor effect is only partly mediated by κ-opiate receptors and heterotrimeric G(i/o)-proteins. To our knowledge our present findings are the first to indicate that DYN-A has a direct cerebral vasoconstrictor effect and that a dynorphin-induced vascular action may be, at least in part, independent of κ-opiate receptors

    Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes

    Full text link

    Differences in the Control of Secondary Peristalsis in the Human Esophagus: Influence of the 5-HT4 Receptor versus the TRPV1 Receptor

    Get PDF
    Objective Acute administration of 5-hydroxytryptamine4 (5-HT4) receptor agonist, mosapride or esophageal infusion of the transient receptor potential vanilloid receptor-1 (TRPV1) agonist capsaicin promotes secondary peristalsis. We aimed to investigate whether acute esophageal instillation of capsaicin-containing red pepper sauce or administration of mosapride has different effects on the physiological characteristics of secondary peristalsis. Methods Secondary peristalsis was induced with mid-esophageal air injections in 14 healthy subjects. We compared the effects on secondary peristalsis subsequent to capsaicin-containing red pepper sauce (pure capsaicin, 0.84 mg) or 40 mg oral mosapride. Results The threshold volume for generating secondary peristalsis during slow air distensions was significantly decreased with capsaicin infusion compared to mosapride (11.6 ± 1.0 vs. 14.1 ± 0.8 mL, P = 0.02). The threshold volume required to produce secondary peristalsis during rapid air distension was also significantly decreased with capsaicin infusion (4.6 ± 0.5 vs. 5.2 ± 0.6 mL, P = 0.02). Secondary peristalsis was noted more frequently in response to rapid air distension after capsaicin infusion than mosapride (80% 60–100% vs. 65% 5–100%, P = 0.04). Infusion of capsaicin or mosapride administration didn’t change any parameters of primary or secondary peristalsis. Conclusions Esophageal infusion with capsaicin-containing red pepper sauce suspension does create greater mechanosensitivity as measured by secondary peristalsis than 5-HT4 receptor agonist mosapride. Capsaicin-sensitive afferents appear to be more involved in the sensory modulation of distension-induced secondary peristalsis.Yeshttp://www.plosone.org/static/editorial#pee
    corecore