439 research outputs found

    Biocompatible Nanocomplexes for Molecular Targeted MRI Contrast Agent

    Get PDF
    Accurate diagnosis in early stage is vital for the treatment of Hepatocellular carcinoma. The aim of this study was to investigate the potential of poly lactic acid–polyethylene glycol/gadolinium–diethylenetriamine-pentaacetic acid (PLA–PEG/Gd–DTPA) nanocomplexes using as biocompatible molecular magnetic resonance imaging (MRI) contrast agent. The PLA–PEG/Gd–DTPA nanocomplexes were obtained using self-assembly nanotechnology by incubation of PLA–PEG nanoparticles and the commercial contrast agent, Gd–DTPA. The physicochemical properties of nanocomplexes were measured by atomic force microscopy and photon correlation spectroscopy. The T1-weighted MR images of the nanocomplexes were obtained in a 3.0 T clinical MR imager. The stability study was carried out in human plasma and the distribution in vivo was investigated in rats. The mean size of the PLA–PEG/Gd–DTPA nanocomplexes was 187.9 ± 2.30 nm, and the polydispersity index was 0.108, and the zeta potential was −12.36 ± 3.58 mV. The results of MRI test confirmed that the PLA–PEG/Gd–DTPA nanocomplexes possessed the ability of MRI, and the direct correlation between the MRI imaging intensities and the nano-complex concentrations was observed (r = 0.987). The signal intensity was still stable within 2 h after incubation of the nanocomplexes in human plasma. The nanocomplexes gave much better image contrast effects and longer stagnation time than that of commercial contrast agent in rat liver. A dose of 0.04 mmol of gadolinium per kilogram of body weight was sufficient to increase the MRI imaging intensities in rat livers by five-fold compared with the commercial Gd–DTPA. PLA–PEG/Gd–DTPA nanocomplexes could be prepared easily with small particle sizes. The nanocomplexes had high plasma stability, better image contrast effect, and liver targeting property. These results indicated that the PLA–PEG/Gd–DTPA nanocomplexes might be potential as molecular targeted imaging contrast agent

    Template-directed synthesis of a cubic cyclodextrin polymer with aligned channels and enhanced drug payload

    Get PDF
    Despite its 3D porous structure, the pharmaceutical applications of cyclodextrin based cross-linked polymers are limited due to their structural irregularities. To address this issue, a template-directed strategy is used to obtain cubic micro and nano cyclodextrin cross-linked polymer (CD-cubes) from cyclodextrin metal organic frameworks in this study. The well-organized γ-CDs in MOFs were crosslinked by diphenyl carbonate by a facile single step chemical reaction. Scanning electron microscopy and X-ray diffraction analysis revealed the almost perfect cubic shapes of the particles with a disordered internal structure. Contrarily to the non-crosslinked materials which immediately dissolved in water, the CD-cubes were remarkably stable after extensive washing with water. The CD-cubes possessed a mesoporous structure with pore size in the range of 2–4 nm and showed much higher BET surface and 8 times higher adsorption capacity for doxorubicin as compared to conventional cyclodextrin-sponges

    Moisture resistant and biofriendly CD-MOF nanoparticles obtained via cholesterol shielding

    Get PDF
    A facile and one step-method was developed to enhance the water stability of CD-MOF nanoparticles through surface modification with cholesterol. CD-MOFs were able to maintain their cubic crystalline structures even after 24 h of incubation, well tolerated in vivo and could increase up to 4 times the blood half-life of DOX

    Synthesis of Fluorine-18 Functionalized Nanoparticles for use as in vivo Molecular Imaging Agents

    Get PDF
    Nanoparticles containing fluorine-18 were prepared from block copolymers made by ring opening metathesis polymerization (ROMP). Using the fast initiating ruthenium metathesis catalyst (H_2IMes)(pyr)_2(Cl)_2Ru=CHPh, low polydispersity amphiphilic block copolymers were prepared from a cinnamoyl-containing hydrophobic norbornene monomer and a mesyl-terminated PEG-containing hydrophilic norbornene monomer. Self-assembly into micelles and subsequent cross-linking of the micelle cores by light-activated dimerization of the cinnamoyl groups yielded stable nanoparticles. Incorporation of fluorine-18 was achieved by nucleophilic displacement of the mesylates by the radioactive fluoride ion with 31% incorporation of radioactivity. The resulting positron-emitting nanoparticles are to be used as in vivo molecular imaging agents for use in tumor imaging

    Intrinsic antibacterial activity of nanoparticles made of ÎČ-cyclodextrins potentiates their effect as drug nanocarriers against tuberculosis

    Get PDF
    Multi-drug-resistant tuberculosis (TB) is a major public health problem, concerning about half a million cases each year. Patients hardly adhere to the current strict treatment consisting of more than 10 000 tablets over a 2-year period. There is a clear need for efficient and better formulated medications. We have previously shown that nanoparticles made of cross-linked poly-ÎČ-cyclodextrins (pÎČCD) are efficient vehicles for pulmonary delivery of powerful combinations of anti-TB drugs. Here, we report that in addition to being efficient drug carriers, pÎČCD nanoparticles are endowed with intrinsic antibacterial properties. Empty pÎČCD nanoparticles are able to impair Mycobacterium tuberculosis (Mtb) establishment after pulmonary administration in mice. pÎČCD hamper colonization of macrophages by Mtb by interfering with lipid rafts, without inducing toxicity. Moreover, pÎČCD provoke macrophage apoptosis, leading to depletion of infected cells, thus creating a lung microenvironment detrimental to Mtb persistence. Taken together, our results suggest that pÎČCD nanoparticles loaded or not with antibiotics have an antibacterial action on their own and could be used as a carrier in drug regimen formulations effective against TB.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Nanoparticles that communicate in vivo to amplify tumour targeting

    Get PDF
    Author Manuscript: 2012 May 29Nanomedicines have enormous potential to improve the precision of cancer therapy, yet our ability to efficiently home these materials to regions of disease in vivo remains very limited. Inspired by the ability of communication to improve targeting in biological systems, such as inflammatory-cell recruitment to sites of disease, we construct systems where synthetic biological and nanotechnological components communicate to amplify disease targeting in vivo. These systems are composed of ‘signalling’ modules (nanoparticles or engineered proteins) that target tumours and then locally activate the coagulation cascade to broadcast tumour location to clot-targeted ‘receiving’ nanoparticles in circulation that carry a diagnostic or therapeutic cargo, thereby amplifying their delivery. We show that communicating nanoparticle systems can be composed of multiple types of signalling and receiving modules, can transmit information through multiple molecular pathways in coagulation, can operate autonomously and can target over 40 times higher doses of chemotherapeutics to tumours than non-communicating controls.National Cancer Institute (U.S.) (SBMRI Cancer Center Support Grant 5 P30 CA30199-28)National Cancer Institute (U.S.) (MIT CCNE Grant U54 CA119349)National Cancer Institute (U.S.) (Bioengineering Research Partnership Grant 5-R01-CA124427)National Cancer Institute (U.S.) (UCSD CCNE Grant U54 CA 119335)National Science Foundation (U.S.) (Whitaker Graduate Fellowship

    Genome-Wide Interaction Analysis of Air Pollution Exposure and Childhood Asthma with Functional Follow-up

    Get PDF
    Rationale: The evidence supporting an association between traffic-related air pollution exposure and incident childhood asthma is inconsistent and may depend on genetic factors. Objectives: To identify gene–environment interaction effects on childhood asthma using genome-wide single-nucleotide polymorphism (SNP) data and air pollution exposure. Identified loci were further analyzed at epigenetic and transcriptomic levels. Methods: We used land use regression models to estimate individual air pollution exposure (represented by outdoor NO2 levels) at the birth address and performed a genome-wide interaction study for doctors’ diagnoses of asthma up to 8 years in three European birth cohorts (n = 1,534) with look-up for interaction in two separate North American cohorts, CHS (Children’s Health Study) and CAPPS/SAGE (Canadian Asthma Primary Prevention Study/Study of Asthma, Genetics and Environment) (n = 1,602 and 186 subjects, respectively). We assessed expression quantitative trait locus effects in human lung specimens and blood, as well as associations among air pollution exposure, methylation, and transcriptomic patterns. Measurements and Main Results: In the European cohorts, 186 SNPs had an interaction P < 1 × 10−4 and a look-up evaluation of these disclosed 8 SNPs in 4 loci, with an interaction P < 0.05 in the large CHS study, but not in CAPPS/SAGE. Three SNPs within adenylate cyclase 2 (ADCY2) showed the same direction of the interaction effect and were found to influence ADCY2 gene expression in peripheral blood (P = 4.50 × 10−4). One other SNP with P < 0.05 for interaction in CHS, rs686237, strongly influenced UDP-Gal:betaGlcNAc ÎČ-1,4-galactosyltransferase, polypeptide 5 (B4GALT5) expression in lung tissue (P = 1.18 × 10−17). Air pollution exposure was associated with differential discs, large homolog 2 (DLG2) methylation and expression. Conclusions: Our results indicated that gene–environment interactions are important for asthma development and provided supportive evidence for interaction with air pollution for ADCY2, B4GALT5, and DLG2

    Relevance of Minor Neuropsychological Deficits in Patients With Subjective Cognitive Decline

    Get PDF
    peer reviewed[en] BACKGROUND AND OBJECTIVES: To determine the relevance of minor neuropsychological deficits (MNPD) in patients with subjective cognitive decline (SCD) with regard to CSF levels of Alzheimer disease (AD) biomarkers, cognitive decline, and clinical progression to mild cognitive impairment (MCI). METHODS: This study included patients with clinical SCD and SCD-free, healthy control (HC) participants with available baseline CSF and/or longitudinal cognitive data from the observational DZNE Longitudinal Cognitive Impairment and Dementia study. We defined MNPD as a performance of at least 0.5SD below the mean on a demographically adjusted total score derived from the Consortium to Establish a Registry for Alzheimer's Disease neuropsychological assessment battery. We compared SCD patients with MNPD and those without MNPD with regard to CSF amyloid-ÎČ (AÎČ)42/AÎČ40, phosphorylated tau (p-tau181), total tau and AÎČ42/p-tau181 levels, longitudinal cognitive composite trajectories, and risk of clinical progression to incident MCI (follow-up M ± SD: 40.6 ± 23.7 months). In addition, we explored group differences between SCD and HC in those without MNPD. RESULTS: In our sample (N = 672, mean age: 70.7 ± 5.9 years, 50% female), SCD patients with MNPD (n = 55, 12.5% of SCD group) showed significantly more abnormal CSF biomarker levels, increased cognitive decline, and a higher risk of progression to incident MCI (HR: 4.07, 95% CI 2.46-6.74) compared with SCD patients without MNPD (n = 384). MNPD had a positive predictive value of 57.0% (95% CI 38.5-75.4) and a negative predictive value of 86.0% (95% CI 81.9-90.1) for the progression of SCD to MCI within 3 years. SCD patients without MNPD showed increased cognitive decline and a higher risk of incident MCI compared with HC participants without MNPD (n = 215; HR: 4.09, 95% CI 2.07-8.09), while AD biomarker levels did not differ significantly between these groups. DISCUSSION: Our results suggest that MNPD are a risk factor for AD-related clinical progression in cognitively normal patients seeking medical counseling because of SCD. As such, the assessment of MNPD could be useful for individual clinical prediction and for AD risk stratification in clinical trials. However, SCD remains a risk factor for future cognitive decline even in the absence of MNPD
    • 

    corecore