55,007 research outputs found

    Transverse spreading of electrons in high-intensity laser fields

    Get PDF
    We show that for collisions of electrons with a high-intensity laser, discrete photon emissions introduce a transverse beam spread which is distinct from that due to classical (or beam shape) effects. Via numerical simulations, we show that this quantum induced transverse momentum gain of the electron is manifest in collisions with a realistic laser pulse of intensity within reach of current technology, and we propose it as a measurable signature of strong-field quantum electrodynamics.Comment: 5 pages, 3 figures. Accepted for publication in Physical Review Letter

    Helicopter noise research at the Langley V/STOL tunnel

    Get PDF
    The noise generated from a 1/4-scale AH-1G helicopter configuration was investigated in the Langley V/STOL tunnel. Microphones were installed in positions scaled to those for which flight test data were available. Model and tunnel conditions were carefully set to properly scaled flight conditions. Data presented indicate a high degree of similarity between model and flight test results. It was found that the pressure time history waveforms are very much alike in shape and amplitude. Blade slap when it occurred seemed to be generated in about the same location in the rotor disk as on the flight vehicle. If model and tunnel conditions were properly matched, including inflow turbulence characteristics, the intensity of the blade-slap impulse seemed to correlate well with flight

    A Modified Stern-Gerlach Experiment Using a Quantum Two-State Magnetic Field

    Full text link
    The Stern-Gerlach experiment has played an important role in our understanding of quantum behavior. We propose and analyze a modified version of this experiment where the magnetic field of the detector is in a quantum superposition, which may be experimentally realized using a superconducting flux qubit. We show that if incident spin-1/21/2 particles couple with the two-state magnetic field, a discrete target distribution results that resembles the distribution in the classical Stern-Gerlach experiment. As an application of the general result, we compute the distribution for a square waveform of the incident fermion. This experimental setup allows us to establish: (1) the quantization of the intrinsic angular momentum of a spin-1/21/2 particle, and (2) a correlation between EPR pairs leading to nonlocality, without necessarily collapsing the particle's spin wavefunction.Comment: 12 pages, 2 figure

    Magnetic Properties of Pd_(0.996)Mn_(0.004) Films for High Resolution Thermometry

    Get PDF
    We have previously reported on the temperature and magnetic field dependence of the magnetic susceptibility of thin Pd_(1−x)Mn_x alloy films. Extensive new measurements on sputtered films show that a commercial quality sputtering process produces a film with the same dependence of Curie temperature on x as previously reported for bulk samples of the same material. These measurements and parameters from the Renormalization Group theory for a Heisenberg ferromagnet, yield an estimate for T_c of 1.16 ± 0.01 K when x − 0.004, consistent with previously reported bulk result

    The Influence of Dual-Recycling on Parametric Instabilities at Advanced LIGO

    Get PDF
    Laser interferometers with high circulating power and suspended optics, such as the LIGO gravitational wave detectors, experience an optomechanical coupling effect known as a parametric instability: the runaway excitation of a mechanical resonance in a mirror driven by the optical field. This can saturate the interferometer sensing and control systems and limit the observation time of the detector. Current mitigation techniques at the LIGO sites are successfully suppressing all observed parametric instabilities, and focus on the behaviour of the instabilities in the Fabry-Perot arm cavities of the interferometer, where the instabilities are first generated. In this paper we model the full dual-recycled Advanced LIGO design with inherent imperfections. We find that the addition of the power- and signal-recycling cavities shapes the interferometer response to mechanical modes, resulting in up to four times as many peaks. Changes to the accumulated phase or Gouy phase in the signal-recycling cavity have a significant impact on the parametric gain, and therefore which modes require suppression.Comment: 9 pages, 11 figures, 2 ancillary file

    Interband, intraband and excited-state direct photon absorption of silicon and germanium nanocrystals embedded in a wide band-gap lattice

    Get PDF
    Embedded Si and Ge nanocrystals (NCs) in wide band-gap matrices are studied theoretically using an atomistic pseudopotential approach. From small clusters to large NCs containing on the order of several thousand atoms are considered. Effective band-gap values as a function of NC diameter reproduce very well the available experimental and theoretical data. It is observed that the highest occupied molecular orbital for both Si and Ge NCs and the lowest unoccupied molecular orbital for Si NCs display oscillations with respect to size among the different irreducible representations of the C3vC_{3v} point group to which these spherical NCs belong. Based on this electronic structure, first the interband absorption is thoroughly studied which shows the importance of surface polarization effects that significantly reduce the absorption when included. This reduction is found to increase with decreasing NC size or with increasing permittivity mismatch between the NC core and the host matrix. Reasonable agreement is observed with the experimental absorption spectra where available. The deformation of spherical NCs into prolate or oblate ellipsoids are seen to introduce no pronounced effects for the absorption spectra. Next, intraconduction and intravalence band absorption coefficients are obtained in the wavelength range from far-infrared to visible region. These results can be valuable for the infrared photodetection prospects of these NC arrays. Finally, excited-state absorption at three different optical pump wavelengths, 532 nm, 355 nm and 266 nm are studied for 3- and 4 nm-diameter NCs. This reveals strong absorption windows in the case of holes and a broad spectrum in the case of electrons which can especially be relevant for the discussions on achieving gain in these structures.Comment: Published version, 13 pages, 15 figures, local field effects include
    corecore