375 research outputs found

    Glucose availability and sensitivity to anoxia of isolated rat peripheral nerve

    Get PDF
    The contrast between resistance to ischemia and ischemic lesions in peripheral nerves of diabetic patients was explored by in vitro experiments. Isolated and desheathed rat peroneal nerves were incubated in the following solutions with different glucose availability: 1) 25 mM glucose, 2) 2.5 mM glucose, and 3) 2.5 mM glucose plus 10 mM 2-deoxy-D-glucose. Additionally, the buffering power of all of these solutions was modified. Compound nerve action potential (CNAP), extracellular pH, and extracellular potassium activity (aKe) were measured simultaneously before, during, and after a period of 30 min of anoxia. An increase in glucose availability led to a slower decline in CNAP and to a smaller rise in aKe during anoxia. This resistance to anoxia was accompanied by an enhanced extracellular acidosis. Postanoxic recovery of CNAP was always complete in 25 mM HCO3(-)-buffered solutions. In 5 mM HCO3- and in HCO3(-)-free solutions, however, nerves incubated in 25 mM glucose did not recover functionally after anoxia, whereas nerves bathed in solutions 2 or 3 showed a complete restitution of CNAP. We conclude that high glucose availability and low PO2 in the combination with decreased buffering power and/or inhibition of HCO3(-)-dependent pH regulation mechanisms may damage peripheral mammalian nerves due to a pronounced intracellular acidosis

    Excitatory amino acids and intracellular pH in motoneurons of the isolated frog spinal cord

    Get PDF
    Double-barrelled pH-sensitive micro-electrodes were used to measure changes of intracellular and extracellular pH in and around motoneurons of the isolated frog spinal cord during application of excitatory amino acids. It was found that N-methyl- -aspartate, quisqualate and kainate produced a concentration-dependent intracellular acidification. Extracellularly, triphasic pH changes (acid-alkaline-acid going pH transients) were observed during the action of these amino acids. The possible significance of such pH changes for the physiological and pathophysiological effects of excitatory amino acids are discussed

    Cellular mechanisms of potassium homeostasis in the mammalian nervous system

    Full text link

    Sticking under wet conditions: the remarkable attachment abilities of the torrent frog, staurois guttatus

    Get PDF
    Tree frogs climb smooth surfaces utilising capillary forces arising from an air-fluid interface around their toe pads, whereas torrent frogs are able to climb in wet environments near waterfalls where the integrity of the meniscus is at risk. This study compares the adhesive capabilities of a torrent frog to a tree frog, investigating possible adaptations for adhesion under wet conditions. We challenged both frog species to cling to a platform which could be tilted from the horizontal to an upside-down orientation, testing the frogs on different levels of roughness and water flow. On dry, smooth surfaces, both frog species stayed attached to overhanging slopes equally well. In contrast, under both low and high flow rate conditions, the torrent frogs performed significantly better, even adhering under conditions where their toe pads were submerged in water, abolishing the meniscus that underlies capillarity. Using a transparent platform where areas of contact are illuminated, we measured the contact area of frogs during platform rotation under dry conditions. Both frog species not only used the contact area of their pads to adhere, but also large parts of their belly and thigh skin. In the tree frogs, the belly and thighs often detached on steeper slopes, whereas the torrent frogs increased the use of these areas as the slope angle increased. Probing small areas of the different skin parts with a force transducer revealed that forces declined significantly in wet conditions, with only minor differences between the frog species. The superior abilities of the torrent frogs were thus due to the large contact area they used on steep, overhanging surfaces. SEM images revealed slightly elongated cells in the periphery of the toe pads in the torrent frogs, with straightened channels in between them which could facilitate drainage of excess fluid underneath the pad

    Changes in intracellular ion activities induced by adrenaline in human and rat skeletal muscle

    Get PDF
    To study the stimulating effect of adrenaline (ADR) on active Na+/K+ transport we used double-barrelled ion-sensitive micro-electrodes to measure the activities of extracellular K+ (aKe) and intracellular Na+ (aNai) in isolated preparations of rat soleus muscle, normal human intercostal muscle and one case of hyperkalemic periodic paralysis (h.p.p.). In these preparations bath-application of ADR (10−6 M) resulted in a membrane hyperpolarization and transient decreasesaKe andaNai which could be blocked by ouabain (3×10−4 M). In the h.p.p. muslce a continuous rise ofaNai induced by elevation ofaKe to 5.2 mM could be stopped by ADR. In addition, the intracellular K+ activity (aKi), the free intracellular Ca2+ concentration (pCai) and intracellular pH (pHi) were monitored in rat soleus muscle. During ADRaKi increased, pHi remained constant and intracellular Ca2+ apparently decreased. In conclusion, our data show that ADR primarily stimulates the Na+/K+ pump in mammalian skeletal muscle. This stimulating action is not impaired in the h.p.p. muscle

    NMR evidence for inhomogeneous glassy behavior driven by nematic fluctuations in iron arsenide superconductors

    Get PDF
    We present 75^{75}As nuclear magnetic resonance spin-lattice and spin-spin relaxation rate data in Ba(Fe1−x_{1-x}Cox_x)2_2As2_2 and Ba(Fe1−x_{1-x}Cux_x)2_2As2_2 as a function of temperature, doping and magnetic field. The relaxation curves exhibit a broad distribution of relaxation rates, consistent with inhomogeneous glassy behavior up to 100 K. The doping and temperature response of the width of the dynamical heterogeneity is similar to that of the nematic susceptibility measured by elastoresistance measurements. We argue that quenched random fields which couple to the nematic order give rise to a nematic glass that is reflected in the spin dynamics.Comment: Accepted to Physical Review

    Effects of guanidine on synaptic transmission in the spinal cord of the frog

    Get PDF
    The effects of guanidine on motoneurons of the isolated frog spinal cord were studied by adding the drug to the solution bathing the cord during intracellular recording. Guanidine (5·10–4 M) did not alter the membrane potential of motoneurons. The main effect was a marked increase of the amplitudes and frequencies of small spontaneously occurring inhibitory postsynaptic potentials. The hyperpolarizing component of postsynaptic potentials evoked by stimulation of dorsal roots was also enhanced by guanidine. Higher concentrations of guanidine (5·10–3 M) resulted in a very large and irreversible increase of the small spontaneously occurring inhibitory potentials, which now appeared in a regular, rhythmic pattern. The effects of guanidine could easily be blocked by increasing the magnesium ions (15 mM) in the bath solution. These results indicate that guanidine facilitates the release of an inhibitory transmitter in afferent terminals of the frog spinal cord either by a direct action on these terminals or indirectly by an action on nerve endings impinging on inhibitory interneurons
    • …
    corecore