589 research outputs found

    Phase diffusion and charging effects in Josephson junctions

    Full text link
    The supercurrent of a Josephson junction is reduced by phase diffusion. For ultrasmall capacitance junctions the current may be further decreased by Coulomb blockade effects. We calculate the Cooper pair current by means of time-dependent perturbation theory to all orders in the Josephson coupling energy and obtain the current-voltage characteristic in closed form in a range of parameters of experimental interest. The results comprehend phase diffusion of the coherent Josephson current in the classical regime as well as the supercurrent peak due to incoherent Cooper pair tunneling in the strong Coulomb blockade regime.Comment: 4 pages, 3 figures, RevTe

    Direct measurement of the maximum tunnel rate in a radio frequency single electron transistor operated as a microwave mixer

    Full text link
    By operating the radio frequency single electron transistor (rf-SET) as a mixer we present measurements in which the RC roll-off of the tunnel junctions is observed at high frequencies. Our technique makes use of the non-linear rf-SET transconductance to mix high frequency gate signals and produce difference-frequency components that fall within the bandwidth of the rf-SET. At gate frequencies >15GHz the induced charge on the rf-SET island is altered on time-scales faster than the inverse tunnel rate, preventing mixer operation. We suggest the possibility of utilizing this technique to sense high frequency signals beyond the usual rf-SET bandwidth.Comment: Submitted to Applied Physics Letters. Comments always very welcome, email:[email protected] (New version contains extra data and new figs

    Is the dynamics of open quantum systems always linear?

    Full text link
    We study the influence of the preparation of an open quantum system on its reduced time evolution. In contrast to the frequently considered case of an initial preparation where the total density matrix factorizes into a product of a system density matrix and a bath density matrix the time evolution generally is no longer governed by a linear map nor is this map affine. Put differently, the evolution is truly nonlinear and cannot be cast into the form of a linear map plus a term that is independent of the initial density matrix of the open quantum system. As a consequence, the inhomogeneity that emerges in formally exact generalized master equations is in fact a nonlinear term that vanishes for a factorizing initial state. The general results are elucidated with the example of two interacting spins prepared at thermal equilibrium with one spin subjected to an external field. The second spin represents the environment. The field allows the preparation of mixed density matrices of the first spin that can be represented as a convex combination of two limiting pure states, i.e. the preparable reduced density matrices make up a convex set. Moreover, the map from these reduced density matrices onto the corresponding density matrices of the total system is affine only for vanishing coupling between the spins. In general, the set of the accessible total density matrices is nonconvex.Comment: 19 pages, 3 figures, minor changes to improve readability, discussion on Mori's linear regime and references adde

    Many body effects in finite metallic carbon nanotubes

    Full text link
    The non homogeneity of the charge distribution in a carbon nanotube leads to the formation of an excitonic resonance, in a similar way to the one observed in X-ray absorption in metals. As a result, a positive anomaly at low bias appears in the tunnelling density of states. This effect depends on the screening of the electron--electron interactions by metallic gates, and it modifies the coupling of the nanotube to normal and superconducting electrodes.Comment: 5 page

    Quantum confinement corrections to the capacitance of gated one-dimensional nanostructures

    Get PDF
    With the help of a multi-configurational Green's function approach we simulate single-electron Coulomb charging effects in gated ultimately scaled nanostructures which are beyond the scope of a selfconsistent mean-field description. From the simulated Coulomb-blockade characteristics we derive effective system capacitances and demonstrate how quantum confinement effects give rise to corrections. Such deviations are crucial for the interpretation of experimentally determined capacitances and the extraction of application-relevant system parameters

    Coulomb Blockade due to Quantum Phase-Slips Illustrated with Devices

    Full text link
    In order to illustrate the emergence of Coulomb blockade from coherent quantum phase-slip processes in thin superconducting wires, we propose and theoretically investigate two elementary setups, or "devices". The setups are derived from Cooper-pair box and Cooper-pair transistor, so we refer to them as QPS-box and QPS-transistor, respectively. We demonstrate that the devices exhibit sensitivity to a charge induced by a gate electrode, this being the main signature of Coulomb blockade. Experimental realization of these devices will unambiguously prove the Coulomb blockade as an effect of coherence of phase-slip processes. We analyze the emergence of discrete charging in the limit strong phase-slips. We have found and investigated six distinct regimes that are realized depending on the relation between three characteristic energy scales: inductive and charging energy, and phase-slip amplitude. For completeness, we include a brief discussion of dual Josephson-junction devices

    Dissipative Quantum Systems with Potential Barrier. General Theory and Parabolic Barrier

    Get PDF
    We study the real time dynamics of a quantum system with potential barrier coupled to a heat-bath environment. Employing the path integral approach an evolution equation for the time dependent density matrix is derived. The time evolution is evaluated explicitly near the barrier top in the temperature region where quantum effects become important. It is shown that there exists a quasi-stationary state with a constant flux across the potential barrier. This state generalizes the Kramers flux solution of the classical Fokker-Planck equation to the quantum regime. In the temperature range explored the quantum flux state depends only on the parabolic approximation of the anharmonic barrier potential near the top. The parameter range within which the solution is valid is investigated in detail. In particular, by matching the flux state onto the equilibrium state on one side of the barrier we gain a condition on the minimal damping strength. For very high temperatures this condition reduces to a known result from classical rate theory. Within the specified parameter range the decay rate out of a metastable state is calculated from the flux solution. The rate is shown to coincide with the result of purely thermodynamic methods. The real time approach presented can be extended to lower temperatures and smaller damping.Comment: 29 pages + 1 figure as compressed ps-file (uufiles) to appear in Phys. Rev.

    Radio-frequency operation of a double-island single-electron transistor

    Full text link
    We present results on a double-island single-electron transistor (DISET) operated at radio-frequency (rf) for fast and highly sensitive detection of charge motion in the solid state. Using an intuitive definition for the charge sensitivity, we compare a DISET to a conventional single-electron transistor (SET). We find that a DISET can be more sensitive than a SET for identical, minimum device resistances in the Coulomb blockade regime. This is of particular importance for rf operation where ideal impedance matching to 50 Ohm transmission lines is only possible for a limited range of device resistances. We report a charge sensitivity of 5.6E-6 e/sqrt(Hz) for a rf-DISET, together with a demonstration of single-shot detection of small (<=0.1e) charge signals on microsecond timescales.Comment: 6 pages, 6 figure

    Quantum Brownian Motion With Large Friction

    Full text link
    Quantum Brownian motion in the strong friction limit is studied based on the exact path integral formulation of dissipative systems. In this limit the time-nonlocal reduced dynamics can be cast into an effective equation of motion, the quantum Smoluchowski equation. For strongly condensed phase environments it plays a similar role as master equations in the weak coupling range. Applications for chemical, mesoscopic, and soft matter systems are discussed and reveal the substantial role of quantum fluctuations.Comment: 11 pages, 6 figures, to appear in: Chaos: "100 years of Brownian motion

    Electron tunneling into a quantum wire in the Fabry-Perot regime

    Get PDF
    We study a gated quantum wire contacted to source and drain electrodes in the Fabry-Perot regime. The wire is also coupled to a third terminal (tip), and we allow for an asymmetry of the tip tunneling amplitudes of right and left moving electrons. We analyze configurations where the tip acts as an electron injector or as a voltage-probe, and show that the transport properties of this three-terminal set-up exhibit very rich physical behavior. For a non-interacting wire we find that a tip in the voltage-probe configuration affects the source-drain transport in different ways, namely by suppressing the conductance, by modulating the Fabry-Perot oscillations, and by reducing their visibility. The combined effect of electron electron interaction and finite length of the wire, accounted for by the inhomogeneous Luttinger liquid model, leads to significantly modified predictions as compared to models based on infinite wires. We show that when the tip injects electrons asymmetrically the charge fractionalization induced by interaction cannot be inferred from the asymmetry of the currents flowing in source and drain. Nevertheless interaction effects are visible as oscillations in the non-linear tip-source and tip-drain conductances. Important differences with respect to a two-terminal set-up emerge, suggesting new strategies for the experimental investigation of Luttinger liquid behavior.Comment: 27 pages, 10 figure
    • …
    corecore