49 research outputs found

    Should Research Ethics Encourage the Production of Cost-Effective Interventions?

    Get PDF
    This project considers whether and how research ethics can contribute to the provision of cost-effective medical interventions. Clinical research ethics represents an underexplored context for the promotion of cost-effectiveness. In particular, although scholars have recently argued that research on less-expensive, less-effective interventions can be ethical, there has been little or no discussion of whether ethical considerations justify curtailing research on more expensive, more effective interventions. Yet considering cost-effectiveness at the research stage can help ensure that scarce resources such as tissue samples or limited subject popula- tions are employed where they do the most good; can support parallel efforts by providers and insurers to promote cost-effectiveness; and can ensure that research has social value and benefits subjects. I discuss and rebut potential objections to the consideration of cost-effectiveness in research, including the difficulty of predicting effectiveness and cost at the research stage, concerns about limitations in cost-effectiveness analysis, and worries about overly limiting researchers’ freedom. I then consider the advantages and disadvantages of having certain participants in the research enterprise, including IRBs, advisory committees, sponsors, investigators, and subjects, consider cost-effectiveness. The project concludes by qualifiedly endorsing the consideration of cost-effectiveness at the research stage. While incorporating cost-effectiveness considerations into the ethical evaluation of human subjects research will not on its own ensure that the health care system realizes cost-effectiveness goals, doing so nonetheless represents an important part of a broader effort to control rising medical costs

    The Morningside Initiative: Collaborative Development of a Knowledge Repository to Accelerate Adoption of Clinical Decision Support

    Get PDF
    The Morningside Initiative is a public-private activity that has evolved from an August, 2007, meeting at the Morningside Inn, in Frederick, MD, sponsored by the Telemedicine and Advanced Technology Research Center (TATRC) of the US Army Medical Research Materiel Command. Participants were subject matter experts in clinical decision support (CDS) and included representatives from the Department of Defense, Veterans Health Administration, Kaiser Permanente, Partners Healthcare System, Henry Ford Health System, Arizona State University, and the American Medical Informatics Association (AMIA). The Morningside Initiative was convened in response to the AMIA Roadmap for National Action on Clinical Decision Support and on the basis of other considerations and experiences of the participants. Its formation was the unanimous recommendation of participants at the 2007 meeting which called for creating a shared repository of executable knowledge for diverse health care organizations and practices, as well as health care system vendors. The rationale is based on the recognition that sharing of clinical knowledge needed for CDS across organizations is currently virtually non-existent, and that, given the considerable investment needed for creating, maintaining and updating authoritative knowledge, which only larger organizations have been able to undertake, this is an impediment to widespread adoption and use of CDS. The Morningside Initiative intends to develop and refine (1) an organizational framework, (2) a technical approach, and (3) CDS content acquisition and management processes for sharing CDS knowledge content, tools, and experience that will scale with growing numbers of participants and can be expanded in scope of content and capabilities. Intermountain Healthcare joined the initial set of participants shortly after its formation. The efforts of the Morningside Initiative are intended to serve as the basis for a series of next steps in a national agenda for CDS. It is based on the belief that sharing of knowledge can be highly effective as is the case in other competitive domains such as genomics. Participants in the Morningside Initiative believe that a coordinated effort between the private and public sectors is needed to accomplish this goal and that a small number of highly visible and respected health care organizations in the public and private sector can lead by example. Ultimately, a future collaborative knowledge sharing organization must have a sustainable long-term business model for financial support

    Who is Responsible for Evaluating the Safety and Effectiveness of Medical Devices? The Role of Independent Technology Assessment

    Get PDF
    IntroductionThe global medical technology industry brings thousands of devices to market every year. However, significant gaps persist in the scientific literature, in the medical device approval process, and in the realm of postmarketing surveillance. Although thousands of drugs obtain approval only after review in randomized controlled trials, relatively few new medical devices are subject to comparable scrutiny.ObjectiveTo improve health outcomes, we must enhance our scrutiny of medical devices, and, without simply deferring to the Food and Drug Administration, we must ask ourselves: Who is responsible for evaluating the safety and effectiveness of medical devices?ConclusionsTechnology assessments by independent organizations are a part of the solution to this challenge and may motivate further research focused on patient outcomes

    Financial impact of reducing door-to-balloon time in ST-elevation myocardial infarction: a single hospital experience

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The impact of reducing door-to-balloon time on hospital revenues, costs, and net income is unknown.</p> <p>Methods</p> <p>We prospectively determined the impact on hospital finances of (1) emergency department physician activation of the catheterization lab and (2) immediate transfer of the patient to an immediately available catheterization lab by an in-house transfer team consisting of an emergency department nurse, a critical care unit nurse, and a chest pain unit nurse. We collected financial data for 52 consecutive ST-elevation myocardial infarction patients undergoing emergency percutaneous intervention from October 1, 2004–August 31, 2005 and compared this group to 80 consecutive ST-elevation myocardial infarction patients from September 1, 2005–June 26, 2006 after protocol implementation.</p> <p>Results</p> <p>Per hospital admission, insurance payments (hospital revenue) decreased (35,043±35,043 ± 36,670 vs. 25,329±25,329 ± 16,185, P = 0.039) along with total hospital costs (28,082±28,082 ± 31,453 vs. 18,195±18,195 ± 9,242, P = 0.009). Hospital net income per admission was unchanged (6962vs.6962 vs. 7134, P = 0.95) as the drop in hospital revenue equaled the drop in costs. For every 1000reductionintotalhospitalcosts,insurancepayments(hospitalrevenue)dropped1000 reduction in total hospital costs, insurance payments (hospital revenue) dropped 1077 for private payers and 1199forMedicare/Medicaid.Adecreaseinhospitalcharges(1199 for Medicare/Medicaid. A decrease in hospital charges (70,430 ± 74,033vs.74,033 vs. 53,514 ± 23,378,P=0.059),diagnosisrelatedgrouprelativeweight(3.7479±2.6731vs.2.9729±0.8545,P=0.017)andoutlierpaymentswithhospitalrevenue>23,378, P = 0.059), diagnosis related group relative weight (3.7479 ± 2.6731 vs. 2.9729 ± 0.8545, P = 0.017) and outlier payments with hospital revenue>100,000 (7.7% vs. 0%, P = 0.022) all contributed to decreasing ST-elevation myocardial infarction hospitalization revenue. One-year post-discharge financial follow-up revealed similar results: Insurance payments: 49,959±49,959 ± 53,741 vs. 35,937±35,937 ± 23,125, P = 0.044; Total hospital costs: 39,974±39,974 ± 37,434 vs. 26,778±26,778 ± 15,561, P = 0.007; Net Income: 9984vs.9984 vs. 9159, P = 0.855.</p> <p>Conclusion</p> <p>All of the financial benefits of reducing door-to-balloon time in ST-elevation myocardial infarction go to payers both during initial hospitalization and after one-year follow-up.</p> <p>Trial Registration</p> <p><b>ClinicalTrials.gov ID</b>: NCT00800163</p

    Challenges in Australian policy processes for disinvestment from existing, ineffective health care practices

    Get PDF
    Background Internationally, many health care interventions were diffused prior to the standard use of assessments of safety, effectiveness and cost-effectiveness. Disinvestment from ineffective or inappropriately applied practices is a growing priority for health care systems for reasons of improved quality of care and sustainability of resource allocation. In this paper we examine key challenges for disinvestment from these interventions and explore potential policy-related avenues to advance a disinvestment agenda. Results We examine five key challenges in the area of policy driven disinvestment: 1) lack of resources to support disinvestment policy mechanisms; 2) lack of reliable administrative mechanisms to identify and prioritise technologies and/or practices with uncertain clinical and cost-effectiveness; 3) political, clinical and social challenges to removing an established technology or practice; 4) lack of published studies with evidence demonstrating that existing technologies/practices provide little or no benefit (highlighting complexity of design) and; 5) inadequate resources to support a research agenda to advance disinvestment methods. Partnerships are required to involve government, professional colleges and relevant stakeholder groups to put disinvestment on the agenda. Such partnerships could foster awareness raising, collaboration and improved health outcome data generation and reporting. Dedicated funds and distinct processes could be established within the Medical Services Advisory Committee and Pharmaceutical Benefits Advisory Committee to, a) identify technologies and practices for which there is relative uncertainty that could be the basis for disinvestment analysis, and b) conduct disinvestment assessments of selected item(s) to address existing practices in an analogous manner to the current focus on new and emerging technology. Finally, dedicated funding and cross-disciplinary collaboration is necessary to build health services and policy research capacity, with a focus on advancing disinvestment research methodologies and decision support tools. Conclusion The potential over-utilisation of less than effective clinical practices and the potential under-utilisation of effective clinical practices not only result in less than optimal care but also fragmented, inefficient and unsustainable resource allocation. Systematic policy approaches to disinvestment will improve equity, efficiency, quality and safety of care, as well as sustainability of resource allocation.Adam G Elshaug, Janet E Hiller, Sean R Tunis and John R Mos

    Personalized medicine: new genomics, old lessons

    Get PDF
    Personalized medicine uses traditional, as well as emerging concepts of the genetic and environmental basis of disease to individualize prevention, diagnosis and treatment. Personalized genomics plays a vital, but not exclusive role in this evolving model of personalized medicine. The distinctions between genetic and genomic medicine are more quantitative than qualitative. Personalized genomics builds on principles established by the integration of genetics into medical practice. Principles shared by genetic and genomic aspects of medicine, include the use of variants as markers for diagnosis, prognosis, prevention, as well as targets for treatment, the use of clinically validated variants that may not be functionally characterized, the segregation of these variants in non-Mendelian as well as Mendelian patterns, the role of gene–environment interactions, the dependence on evidence for clinical utility, the critical translational role of behavioral science, and common ethical considerations. During the current period of transition from investigation to practice, consumers should be protected from harms of premature translation of research findings, while encouraging the innovative and cost-effective application of those genomic discoveries that improve personalized medical care
    corecore