220 research outputs found

    Climatic and Biotic Events of the Paleogene 2014, CBEP 2014

    Get PDF
    This special issue include the scientific contributes, short notes and abstracts, presented at the International Meeting: Climatic and Biotic Events of the Paleogene, CBEP 2014, held in Ferrara, Italy, July, 1-6, 2014, 10 thematic sessions. More than 140 participants from 20 countries attended the meeting, included the most famous experts. the http://web.fe.infn.it/cbep2014

    Planktic foraminiferal response to early Eocene carbon cycle perturbations in the southeast Atlantic Ocean (ODP Site 1263)

    Get PDF
    At low latitude locations in the northern hemisphere, striking changes in the relative abundances and diversity of the two dominant planktic foraminifera genera, Morozovella and Acarinina, are known to have occurred close to the Early Eocene Climatic Optimum (EECO; ~ 49–53 Ma). Lower Eocene carbonate-rich sediments at Ocean Drilling Program (ODP) Site 1263 were deposited on a bathymetric high (Walvis Ridge) at ~ 40° S, and afford an opportunity to examine such planktic foraminiferal assemblage changes in a temperate southern hemisphere setting. We present here quantified counts of early Eocene planktic foraminiferal assemblages from Hole 1263B, along with bulk sediment stable isotope analyses and proxy measurements for carbonate dissolution. The bulk sediment δ13C record at Site 1263 resembles similar records generated elsewhere, such that known and inferred hyperthermal events can be readily identified. Although some carbonate dissolution has occurred, the well-preserved planktic foraminiferal assemblages mostly represent primary changes in environmental conditions. Our results document the permanent decrease in Morozovella abundance and increase in Acarinina abundance at the beginning of the EECO, although this switch occurred ~ 165 kyr after that at low-latitude northern hemisphere locations. This suggests that unfavourable environmental conditions for morozovellids at the start of the EECO, such as sustained passage of a temperature threshold or other changes in surface waters, occurred at lower latitudes first. The remarkable turnover from Morozovella to Acarinina was widely geographically widespread, although the causal mechanism remains elusive. In addition, at Site 1263, we document the virtual disappearance within the EECO of the biserial chiloguembelinids, commonly considered as inhabiting intermediate water depths, and a reduction in abundance of the thermocline-dwelling subbotinids. We interpret these changes as signals of subsurface water properties, perhaps warming, and the associated contraction of ecological niches

    Dextral to sinistral coiling switch in planktic foraminifer Morozovella during the Early Eocene Climatic Optimum

    Get PDF
    Coiling direction is a basic characteristic of trochospiral planktic foraminifera. Modifications in the coiling direction within ancient planktic foraminiferal populations may reflect important changes in evolution or environment, yet they remain scarcely discussed. Here we investigate fluctuations in the coiling direction within Morozovella assemblages from sections that span the interval of peak Cenozoic warmth, the Early Eocene Climatic Optimum (EECO; ~53-49 million years ago, Ma), at Atlantic Ocean Drilling Program (ODP) sites 1051, 1258 and 1263. The surface-dwelling genus Morozovella is of particular interest because it dominated tropical-subtropical early Paleogene assemblages then suffered an abrupt and permanent decline in abundance and taxonomic diversity at the start of the EECO. At all ODP sites, morozovellids display a dominant dextral coiling preference during the interval preceding the EECO. However, all the Morozovella species at all sites modify their coiling from preferentially dextral to sinistral coiling within the EECO < 200 kyr after the K/X event (~52.8 Ma), providing a new biostratigraphic tool for correlation. We also document that before the major shift in morozovellid coiling, transient excursions to higher abundances of sinistral tests occurred in conjunction with negative carbon isotope excursions. Significantly, carbon isotope data reveal that sinistral morphotypes belonging to the same morphospecies typically have lower 13C values. The dominance of sinistral morphotypes, at the expense of dextral forms within the EECO, coupled with the lower 13C signatures of the former, suggests that the sinistral forms were less dependent on their photosymbiotic partnerships and thus able to adapt more readily to paleoceanographic change at the EECO. The observed sinistral and dextral coiling of morozovellids can be a genetically heritable characteristic that lies within cryptic speciation across multiple morphologically defined species. Alternatively the coiling changes were exclusively ecophenotypic responses whereby different species were able to preferentially adopt sinistral coiling in reaction to the changed conditions in the mixed-layer during the EECO. Previous interpretations of coiling flips in planktic foraminifera in the early Eocene, especially including morozovellids, have favoured a genetic explanation rather than an ecological response. Our present data cannot validate or disprove this idea, but should stimulate renewed thought on the matter

    Demise of the Planktic Foraminifer genus Morozovella during the Early Eocene Climatic Optimum: new records from ODP Site 1258 (Demerara Rise, western equatorial Atlantic) and Site 1263 (Walvis Ridge, South Atlantic)

    Get PDF
    Here we present relative abundances of planktic foraminifera that span the Early Eocene Climatic Optimum (EECO) at Ocean Drilling Program (ODP) Site 1258 in the western equatorial Atlantic. The EECO (~53.3−49.1 Ma) represents peak Cenozoic warmth, probably related to high atmospheric CO2, and when planktic foraminifera, a dominant component of marine sediment, exhibit a major biotic response. Consistent with previous work, the relative abundance of the genus Morozovella, which dominated early Paleogene tropical-subtropical assemblages, markedly and permanently declined from a mean percentage of ~32% to less than ~7% at the beginning of the EECO. The distinct decrease in Morozovella abundance occurred at Site 1258 within ~20 kyr before a negative excursion in δ13C records known as the J event and which defines the beginning of EECO. Moreover, all morozovellid species except M. aragonensis dropped in abundance permanently at Site 1258, and this is related to a reduction in test-size. Comparing our data with that from other locations, the remarkable switch in planktonic foraminifera assemblages appears to have begun first with unfavourable environmental conditions near the Equator and then extended to higher latitudes. Several potential stressors may explain observations, including some combination of algal photosymbiont inhibition (bleaching), a sustained increase in temperature, or an extended decrease in pH

    Benthic Foraminiferal response to sea level change in the mixed siliciclastic-carbonate system of southern Ashmore Trough (Gulf of Papua)

    Get PDF
    Ashmore Trough in the western Gulf of Papua (GoP) represents an outstanding modern example of a tropical mixed siliciclastic-carbonate depositional system where significant masses of both river-borne silicates and bank-derived neritic carbonates accumulate. In this study, we examine how benthic foraminiferal populations within Ashmore Trough vary in response to sea level–driven paleoenvironmental changes, particularly organic matter and sediment supply. Two 11.3-m-long piston cores and a trigger core were collected from the slope of Ashmore Trough and dated using radiocarbon and oxygen isotope measurements of planktic foraminifera. Relative abundances, principal component analyses, and cluster analyses of benthic foraminiferal assemblages in sediment samples identify three distinct assemblages whose proportions changed over time. Assemblage 1, with high abundances of Uvigerina peregrina and Bolivina robusta, dominated between ∼83 and 70 ka (early regression); assemblage 2, with high abundances of Globocassidulina subglobosa, dominated between ∼70 and 11 ka (late regression through lowstand and early transgression); and assemblage 3, with high abundances of neritic benthic species such as Planorbulina mediterranensis, dominated from ∼11 ka to the present (late transgression through early highstand). Assemblage 1 represents heightened organic carbon flux or lowered bottom water oxygen concentration, and corresponds to a time of maximum siliciclastic fluxes to the slope with falling sea level. Assemblage 2 reflects lowered organic carbon flux or elevated bottom water oxygen concentration, and corresponds to an interval of lowered siliciclastic fluxes to the slope due to sediment bypass during sea level lowstand. Assemblage 3 signals increased off-shelf delivery of neritic carbonates, likely when carbonate productivity on the outer shelf (Great Barrier Reef) increased significantly when it was reflooded. Benthic foraminiferal assemblages in the sediment sink (slopes of Ashmore Trough) likely respond to the amount and type of sediment supplied from the proximal source (outer GoP shelf)

    The Late Miocene-Early Pliocene Biogenic Bloom: An Integrated Study in the Tasman Sea

    Get PDF
    The Late Miocene-Early Pliocene Biogenic Bloom (∼9–3.5 Ma) was a paleoceanographic phenomenon defined by anomalously high accumulations of biological components at multiple open ocean sites, especially in certain regions of the Indian, and Pacific oceans. Its temporal and spatial extent with available information leaves fundamental questions about driving forces and responses unanswered. In this work, we focus on the middle part of the Biogenic Bloom (7.4–4.5 Ma) at International Ocean Discovery Program Site U1506 in the Tasman Sea, where we provide an integrated age model based on orbital tuning of the Natural Gamma Radiation, benthic foraminiferal oxygen isotopes, and calcareous nannofossil biostratigraphy. Benthic foraminiferal assemblages suggest changes in deep water oxygen concentration and seafloor nutrient supply during generally high export productivity conditions. From 7.4 to 6.7 Ma, seafloor conditions were characterized by episodic nutrient supply, perhaps related to seasonal phytoplankton blooms. From 6.7 to 4.5 Ma, the regime shifted to a more stable interval characterized by eutrophic and dysoxic conditions. Combined with seismic data, a regional change in paleoceanography is inferred at around 6.7 Ma, from stronger and well-oxygenated bottom currents to weaker, oxygen-depleted bottom currents. Our results support the hypothesis that the Biogenic Bloom was a complex, multiphase phenomenon driven by changes in ocean currents, rather than a single uniform period of sustained sea surface water productivity. Highly resolved studies are thus fundamental to its understanding and the disentanglement of local, regional, and global imprints

    Stable Isotopic Evidence for Methane Seeps in Neoproterozoic Postglacial Cap Carbonates

    Get PDF
    The Earth's most severe glaciations are thought to have occurred about 600 million years ago, in the late Neoproterozoic era. A puzzling feature of glacial deposits from this interval is that they are overlain by 1–5-m-thick 'cap carbonates' (particulate deep-water marine carbonate rocks) associated with a prominent negative carbon isotope excursion. Cap carbonates have been controversially ascribed to the aftermath of almost complete shutdown of the ocean ecosystems for millions of years during such ice ages—the 'snowball Earth' hypothesis. Conversely, it has also been suggested that these carbonate rocks were the result of destabilization of methane hydrates during deglaciation and concomitant flooding of continental shelves and interior basins. The most compelling criticism of the latter 'methane hydrate' hypothesis has been the apparent lack of extreme isotopic variation in cap carbonates inferred locally to be associated with methane seeps. Here we report carbon isotopic and petrographic data from a Neoproterozoic postglacial cap carbonate in south China that provide direct evidence for methane-influenced processes during deglaciation. This evidence lends strong support to the hypothesis that methane hydrate destabilization contributed to the enigmatic cap carbonate deposition and strongly negative carbon isotopic anomalies following Neoproterozoic ice ages. This explanation requires less extreme environmental disturbance than that implied by the snowball Earth hypothesis

    Physiological Stress and Refuge Behavior by African Elephants

    Get PDF
    Physiological stress responses allow individuals to adapt to changes in their status or surroundings, but chronic exposure to stressors could have detrimental effects. Increased stress hormone secretion leads to short-term escape behavior; however, no studies have assessed the potential of longer-term escape behavior, when individuals are in a chronic physiological state. Such refuge behavior is likely to take two forms, where an individual or population restricts its space use patterns spatially (spatial refuge hypothesis), or alters its use of space temporally (temporal refuge hypothesis). We tested the spatial and temporal refuge hypotheses by comparing space use patterns among three African elephant populations maintaining different fecal glucocorticoid metabolite (FGM) concentrations. In support of the spatial refuge hypothesis, the elephant population that maintained elevated FGM concentrations (iSimangaliso) used 20% less of its reserve than did an elephant population with lower FGM concentrations (Pilanesberg) in a reserve of similar size, and 43% less than elephants in the smaller Phinda reserve. We found mixed support for the temporal refuge hypothesis; home range sizes in the iSimangaliso population did not differ by day compared to nighttime, but elephants used areas within their home ranges differently between day and night. Elephants in all three reserves generally selected forest and woodland habitats over grasslands, but elephants in iSimangaliso selected exotic forest plantations over native habitat types. Our findings suggest that chronic stress is associated with restricted space use and altered habitat preferences that resemble a facultative refuge behavioral response. Elephants can maintain elevated FGM levels for ≥6 years following translocation, during which they exhibit refuge behavior that is likely a result of human disturbance and habitat conditions. Wildlife managers planning to translocate animals, or to initiate other management activities that could result in chronic stress responses, should consider the potential for, and consequences of, refuge behavior

    The DeepMIP contribution to PMIP4: methodologies for selection, compilation and analysis of latest Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database

    Get PDF
    The early Eocene (56 to 48 million years ago) is inferred to have been the most recent time that Earth's atmospheric CO₂ concentrations exceeded 1000 ppm. Global mean temperatures were also substantially warmer than those of the present day. As such, the study of early Eocene climate provides insight into how a super-warm Earth system behaves and offers an opportunity to evaluate climate models under conditions of high greenhouse gas forcing. The Deep Time Model Intercomparison Project (DeepMIP) is a systematic model–model and model–data intercomparison of three early Paleogene time slices: latest Paleocene, Paleocene–Eocene thermal maximum (PETM) and early Eocene climatic optimum (EECO). A previous article outlined the model experimental design for climate model simulations. In this article, we outline the methodologies to be used for the compilation and analysis of climate proxy data, primarily proxies for temperature and CO₂. This paper establishes the protocols for a concerted and coordinated effort to compile the climate proxy records across a wide geographic range. The resulting climate “atlas” will be used to constrain and evaluate climate models for the three selected time intervals and provide insights into the mechanisms that control these warm climate states. We provide version 0.1 of this database, in anticipation that this will be expanded in subsequent publications
    corecore