170 research outputs found

    Supply hubs in industrial parks (SHIP): research perspectives

    Get PDF
    An industrial park is a cluster of enterprises located in one location to share common infrastructure, service and market opportunities. It has been adopted in many countries as an important tool for promoting the economic and industrial development. However, its further development has been impeded by the shortage of land resources especially for enterprises' construction of warehouses. The supply hub, having been employed by large suppliers to warehouse raw materials near manufacturers provides a promising way of solving such problem. In this paper, it is extended to "Supply Hub in Industrial Park (SHIP)" in the sense that warehouses of individual enterprises could be integrated into a single public warehouse and centrally serves the manufacturing processes of all the enterprises in an industrial park. Through the functioning of SHIP, it is expected that the land utilization and cost savings could be improved. As the initial study of SHIP, this paper focuses on several fundamental research perspectives: conceptual framework, working process, and potential benefits. Despite of the qualitative analysis, a mathematical model of SHIP is formulated. This work will contribute to the further research of logistics solutions in industrial parks.published_or_final_versionThe 40th International Conference on Computers & Industrial Engineering (CIE 2010), Awaji, Japan, 25-28 July 2010. In Proceedings of CIE40, 2010, p. 1-6The 40th International Conference on Computers & Industrial Engineering (CIE 2010), Awaji, Japan, 25-28 July 2010. In Proceedings of CIE40, 2010, p. 1-

    RFID-enabled complex event processing application framework for manufacturing

    Get PDF
    In order to face up with classic manufacturing challenges such as high work in progress (WIP) inventories, complexity in production planning and scheduling, and low labour and machine utilisation, many manufacturing companies made their efforts in implementing RFID (Radio Frequency Identification Devices) throughout the manufacturing workshops. Through this way, all production data in manufacturing fields can be obtained in real time, and it improves the flexibility and responsivity to the changing market for the companies. However, at the same time the RFID deployment also introduces a new challenge which requires an effective and efficient method to handle the large amounts of events. This paper proposes an application framework for a real-time Complex Event Management System (CEMS) based on RFID equipments deployment. With the use of Complex Event Processing (CEP) technologies, this system allows users to obtain interested and meaningful information from large numbers of primitive events captured from the RFID devices deployed in manufacturing shop-floor in real time. This paper presents the RFID deployment infrastructure first, and then system design of the CEMS is proposed. © 2011 Inderscience Enterprises Ltd.postprin

    Guest editorial: digital enterprise technology

    Get PDF
    published_or_final_versionSpringer Open Choice, 21 Feb 201

    RFID-enabled real-time manufacturing for automotive part and accessory suppliers

    Get PDF
    Automotive part and accessory manufacturers (APAMs) at the lower tiers of the automotive vertical have been following leading vehicle assemblers in adopting RFID (Radio Frequency Identification) and ubiquitous computing technologies, aiming to alleviate their advanced manufacturing systems. RFID-enabled real-time traceability and visibility facilitate the implementation of advanced strategies such as Just-In-Time (JIT) lean / responsive manufacturing and mass customization (MC). Being typically small and medium sized, however, APAMs are faced up with business and technical challenges which are summarized by the so-called "three high problems". They are high cost, high risk and high level of requirement for technical skills. Based on a series of industrial field studies, this paper establishes an innovative service-oriented business model for overcoming the "three high Problems" based on the concept of Product Service Systems (PSS) and RFID gateway technology.published_or_final_versionThe 40th International Conference on Computers and Industrial Engineering (CIE 2010), Awaji, Japan, 25-28 July 2010. In Proceedings of CIE40, 2010, p. 1-

    A case of implementing RFID-based real-time shop-floor material management for household electrical appliance manufacturers

    Get PDF
    Radio Frequency Identification (RFID) technologies provide automatic and accurate object data capturing capability and enable real-time object visibility and traceability. Potential benefits have been widely reported for improving manufacturing shop-floor management. However, reports on how such potentials come true in real-life shop-floor daily operations are very limited. As a result, skeptics overwhelm enthusiasm. This paper contributes to the re-vitalization of RFID efforts in manufacturing industries by presenting a real-life case study of applying RFID for managing material distribution in a complex assembly shop-floor at a large air conditioner manufacturer. The case study discusses how technical, social and organizational issues have been addressed throughout the project within the company. It is hoped that insights and lessons gained be generalized for future efforts across household electrical appliance manufacturers that share similar shop-floor. © 2010 The Author(s).published_or_final_versionSpringer Open Choice, 21 Feb 201

    RFID-enabled real-time manufacturing execution system for discrete manufacturing: Software design and implementation

    Get PDF
    Discrete manufacturing (DM) refers to produce products in non-sequential processes so as to respond to market and customer requirements quickly under limited lead-time. However, in shop-floor management, DM companies usually confront challenges such as information gaps between different manufacturing units, slow responsiveness to customer changes, and poor visualization. The main reasons are lacking of efficient manufacturing data collection manners and software to support shop-floor management. This paper introduces an RFID-enabled real-time manufacturing execution system (RT-MES) for improving DM shop-floor management level in the perspective of illustrating the RT-MES software design and implementation. Several contributions from this paper are significant. First, a framework of RFID-enabled RT-MES is proposed, which is generic and helpful for enterprise information system (EIS) construction. Second, a plug-universal database-aided design (PUDAD) concept and its realization are elaborated, which could reduce RT-MES development and implementation cycle. Third, an interface middleware is reported to enable RT-MES real-time intercommunication with other EISs such as SAP ERP. Fourth, a real-life case study describes how RT-MES to enhance a typical DM firm's shop-floor management, which can be referenced by other DM companies when they initiate and implement RFID-enabled solutions. © 2011 IEEE.published_or_final_versionThe 2011 IEEE International Conference on Networking, Sensing and Control (ICNSC 2011), Delft, the Netherlands, 11-13 April 2011. In Proceedings of ICNSC, 2011, p. 311-31

    Establishing production service system and information collaboration platform for mold and die products

    Get PDF
    This paper investigates how the new concept of product service systems can be used and extended to transform, elevate, and revitalize traditional equipment manufacturing industry such as the Mold and Die (MD) sector. A mold and die production service systems (MPSS) framework is established based on recent developments within our industrial collaborators. Within the MPSS framework, MD manufacturers become more specialized in producing MD products and components while sharing and outsourcing manufacturing-oriented services (MOS) from a service provider. Typical services include collaborative order pooling and release, collaborative project progress status tracking, contractor-managed collaborative outsourcing, collaborative product design, collaborative production planning and scheduling, and after-sales technical supports. MOSs are designed, developed, and deployed as SaaS (software as application services) following the service-oriented architecture. Collectively, they form iMPSS-an Information and Collaboration Platform that enables MPSS. The use of iMPSS leads to benefits for stakeholders involved in providing mold and die functionality including better shopfloor decisions and reduced IT investments. © 2010 The Author(s).published_or_final_versionSpringer Open Choice, 21 Feb 201
    • …
    corecore