14 research outputs found

    Fuzzy logic path tracking control for autonomous non-holonomic mobile robots: Design of System on a Chip

    No full text
    This paper presents a System on Chip (SoC) for the path following task of autonomous non-holonomic mobile robots. The SoC consists of a parameterized Digital Fuzzy Logic Controller (DFLC) core and a flow control algorithm that runs under the Xilinx Microblaze soft processor core. The fuzzy controller supports a fuzzy path tracking algorithm introduced by the authors. The FPGA board hosting the SoC was attached to an actual differential-drive Pioneer 3-DX8 robot, which was used in field experiments in order to assess the overall performance of the tracking scheme. Moreover, quantization problems and limitations imposed by the system configuration are also discussed

    Design of a teleoperation scheme with a wearable master for minimally invasive surgery

    No full text
    Minimally invasive surgery is increasingly being preferred over conventional surgery, however many problems still persist in longer surgeries such as pituitary surgeries, where surgeons are still required to hold an endoscope in their hand for prolonged periods of time. Many modern approaches have recently been proposed in literature to reduce the surgeon’s effort. In this paper we extended upon these previous attempts and presented a promising solution; a real time teleoperation scheme with 3 different modes of operation, composed of a wearable ring system that captures and transmits voluntary hand motions over a wireless connection to a slave system. Accordingly, this slave system processes the received data to generate velocity demands for the robot endoscope controller. Finally, the feasibility of the proposed modes of operation are demonstrated and compared by measuring their learning curve and effort by running a set of training simulations on human subjects.The Scientific and Technological Research Council of Turke
    corecore