9 research outputs found

    A guide to the Choquard equation

    Get PDF
    We survey old and recent results dealing with the existence and properties of solutions to the Choquard type equations Δu+V(x)u=(x(Nα)up)up2uin RN, -\Delta u + V(x)u = \bigl(|x|^{-(N-\alpha)} * |u|^p\bigr)|u|^{p - 2} u \qquad \text{in $\mathbb{R}^N$}, and some of its variants and extensions.Comment: 39 page

    Semi-classical states for the Choquard equation

    Get PDF
    We study the nonlocal equation ε2Δuε+Vuε=εα(Iαuεp)uεp2uεin RN,-\varepsilon^2 \Delta u_\varepsilon + V u_\varepsilon = \varepsilon^{-\alpha} \bigl(I_\alpha \ast \lvert u_\varepsilon\rvert^p\bigr) \lvert u_\varepsilon \rvert^{p - 2} u_\varepsilon\quad\text{in \(\mathbf{R}^N\)}, where N1N \ge 1, α(0,N)\alpha \in (0, N), Iα(x)=Aα/xNαI_\alpha (x) = A_\alpha/\lvert x \rvert^{N - \alpha} is the Riesz potential and ε>0\varepsilon > 0 is a small parameter. We show that if the external potential VC(RN;[0,))V \in C (\mathbb{R}^N; [0, \infty)) has a local minimum and p[2,(N+α)/(N2)+)p \in [2, (N + \alpha)/(N - 2)_+) then for all small ε>0\varepsilon > 0 the problem has a family of solutions concentrating to the local minimum of VV provided that: either p>1+max(α,α+22)/(N2)+p > 1 + \max (\alpha, \frac{\alpha + 2}{2})/(N - 2)_+, or p>2p > 2 and lim infxV(x)x2>0\liminf_{\lvert x\rvert \to \infty} V (x) \lvert x \rvert^2 > 0, or p=2p = 2 and infxRNV(x)(1+xNα)>0\inf_{x \in \mathbb{R}^N} V (x) (1 + \lvert x \rvert^{N - \alpha}) > 0. Our assumptions on the decay of VV and admissible range of p2p\ge 2 are optimal. The proof uses variational methods and a novel nonlocal penalization technique that we develop in this work.Comment: 28 pages, updated bibliograph
    corecore