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Abstract
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of p≥2 are optimal. The proof uses variational methods and a novel nonlocal
penalization technique that we develop in this work.
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SEMI-CLASSICAL STATES FOR THE CHOQUARD EQUATION

VITALY MOROZ AND JEAN VAN SCHAFTINGEN

Abstract. We study the nonlocal equation

−ε2∆uε + V uε = ε−α
(

Iα ∗ |uε|p
)

|uε|p−2uε in R
N ,

where N ≥ 1, α ∈ (0, N), Iα(x) = Aα/|x|N−α is the Riesz potential and ε > 0 is a small

parameter. We show that if the external potential V ∈ C(RN ; [0, ∞)) has a local minimum
and p ∈ [2, (N + α)/(N − 2)+) then for all small ε > 0 the problem has a family of solutions

concentrating to the local minimum of V provided that: either p > 1+max(α, α+2

2
)/(N −2)+,

or p > 2 and lim inf|x|→∞ V (x)|x|2 > 0, or p = 2 and infx∈RN V (x)(1 + |x|N−α) > 0. Our
assumptions on the decay of V and admissible range of p ≥ 2 are optimal. The proof uses
variational methods and a novel nonlocal penalization technique that we develop in this work.
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1. Introduction and results

1.1. Introduction. We consider the nonlinear Choquard equation

(Pε) − ε2∆uε + V uε = ε−α
(

Iα ∗ |uε|p
)

|uε|p−2uε in R
N ,

where the dimension N ∈ N = {1, 2, . . .} is given, V ∈ C(RN , [0,∞)) is an external potential,
Iα : RN \ {0} → R is the Riesz potential [48] of order α ∈ (0, N) defined for every x ∈ RN \ {0}
by

Iα(x) =
Γ(N−α

2 )

Γ(α
2 )πN/22α|x|N−α

,

p ∈
[

2, N+α
(N−2)+

)

and ε > 0 is a small parameter.

For N = 3, α = 2 and p = 2, the equation (Pε) is the Choquard–Pekar equation which goes
back to the description of the quantum theory of a polaron at rest by S. I. Pekar in 1954 [44] and
which reemerged in 1976 in the work of P. Choquard on the modeling of an electron trapped in its
own hole used (Pε), in a certain approximation to Hartree–Fock theory of one-component plasma
[30]. The equation (Pε) was also proposed in the 90’s by K. R. W. Jones [27, 28] and R. Penrose
[45] as a model of self-gravitating matter and is known in that context as the Schrödinger–Newton

equation [37]. Finally, if u is a solution of (Pε) with V ≡ 1 then the wave-function ψ defined by
ψ(t, x) = e−it/εu(x) is a solitary wave of the focusing time-dependent Hartree equation

iεψt + ε2∆ψ = −ε−α(Iα ∗ |ψ|2)ψ in R × R
N ;

the equation (Pε) is thus the stationary nonlinear Hartree equation.
When the parameter ε > 0 is fixed, the existence and qualitative properties of solutions of

problem (Pε) have been studied for a few decades by variational methods [30; 32; 33, Chapter
III; 35; 36]. Recently, for fixed ε > 0 and when V converges exponentially to a positive limit at
infinity, the existence at least one positive solution to (Pε) has been proved [16, theorem 1.2; 20].

In quantum physical models, the parameter ε is usually the adimensionalized Planck constant,
which is generically quite small. In quantum physics it is expected that in the semi-classical
limit ε → 0 the dynamics should be governed by the classical external potential V . In particular,
there should be a correspondence between semi-classical solutions of the equation (Pε) and
critical points of the potential V .

Mathematically, it can be observed that if uε is a solution of (Pε) and aε ∈ RN , then the
rescaled function vε : RN → R defined for y ∈ RN by

vε(y) = uε(aε + εy)

satisfies the rescaled equation

−∆vε + V (a∗ + ε ·)vε =
(

Iα ∗ |vε|p
)

|vε|p−2vε in R
N .

This suggests some convergence, as ε → 0, of the family of rescaled solutions (vε)ε>0 to a solution
v∗ of the limiting rescaled equation

(P∗) − ∆v∗ + V (a∗)v∗ =
(

Iα ∗ |v∗|p
)

|v∗|p−2v∗ in R
N .

For the local nonlinear Schrödinger equation

(1.1) − ε2∆uε + V uε = |uε|p−2uε in R
N ,

which is the formal limit of the Choquard equation (Pε) as α → 0, such families of semi-classical
solutions that concentrate, as ε → 0, around one or several critical points of the potential V have
been constructed by various methods during the last decades [3, 5, 6, 21, 22, 24].

The question of the existence of semi-classical solutions for the nonlocal problem (Pε) has
been posed more recently [6, p. 29]. In the case N = 2, α = 2, p = 2, families of solutions
have been constructed by a Lyapunov–Schmidt type reduction when inf V > 0 by Wei Juncheng
and M. Winter [54] (see also [18]) and when V > 0 and lim inf |x|→∞ V (x)|x|γ > 0 for some

γ ∈ [0, 1) by S. Secchi [50]1. This method of construction depends on the existence, uniqueness

1It should be noted that lemma 15 in [50] only holds when there exists γ < 1 such that lim inf|x|→∞ V (x)|x|γ >

0 (in the first term in (10) therein, one should read v(y) instead of v(x)). It is known that if
lim sup|x|→∞ V (x)|x|γ = 0 for some γ > 1, the problem (1) considered in [50] does not have a positive solu-

tion [41, theorem 3].



SEMI-CLASSICAL STATES FOR THE CHOQUARD EQUATION 3

and nondegeneracy up to translations of the positive solution of the limiting equation (P∗), which
is a difficult problem that has only been fully solved in the case N = 3, α = 2 and p = 2 [30,54].

S. Cingolani, S. Secchi and M. Squassina have proved the existence of solutions concentrating
around several minimum points of V by a global penalization method for N = 3, p = 2 and α = 2
[19]; in their work the Laplacian can be perturbed by a magnetic field and the Riesz potential
can be replaced by any potential homogeneous of degree −1.

In the present work we prove the existence of a family of positive solutions to (Pε) which
concentrate as ε → 0 to a local minimum of the potential V , in arbitrary dimensions N ∈ N, with
Riesz potentials Iα of any order α ∈ (0, N), and general external potentials V ∈ C(RN ; [0,∞))
without any a-priori restrictions on the decay or growth of V at infinity and for an optimal
range of exponents p ≥ 2. Our proofs use variational methods and a novel nonlocal penalization

technique that we develop in this work. For convenience, we formulate our main results separately
for the cases p = 2 and p > 2

1.2. The locally linear case p = 2. For the classical Choquard nonlinearity p = 2 our main
existence and concentration result is the following.

Theorem 1. Let N ∈ N, α ∈ ((N − 4)+, N), p = 2 and V ∈ C(RN ; [0,∞)). Assume that either

α < N − 2 or

inf
x∈RN

V (x)
(

1 + |x|N−α
)

> 0.

If Λ ⊂ RN is an open bounded set such that

0 < inf
Λ
V < inf

∂Λ
V,

then problem (Pε) has a family of positive solutions (uε)ε∈(0,ε0) ∈ H1
V (RN ) such that for a family

of points (aε)ε∈(0,ε0) in Λ and for every ρ > 0,

lim
ε→0

V (aε) = inf
Λ
V, lim inf

ε→0
ε−N

∫

Bερ(aε)

|uε|2 > 0, lim
R→∞
ε→0

‖uε‖L∞(RN \BεR(aε)) = 0.

Unless otherwise stated we understand solutions of Choquard equation (Pε) in the weak sense,
as critical points of the energy functional

Eε(u) =
1

2

∫

RN

(

ε2|∇u|2 + V |u|2
)

− 1

2pεα

∫

RN

∣

∣Iα
2

∗ |u|p
∣

∣

2
,

which is formally associated to (Pε). Because we do not impose any a-priori assumptions on
the decay of the external potential V at infinity, Eε may not be well-defined on the natural
Sobolev space H1

V (RN ) associated with the local quadratic part of the energy (see section 2.1
below for a precise definition). The nonlocal penalization method developed in this work allows,
in particular, to modify the nonlinearity in such a way that the penalized variational problem
becomes well-posed in the space H1

V (RN ). We shall comment on some features of the nonlocal
penalization method in section 1.4.

When N ≤ 2, the condition on the potential V is always

inf
x∈RN

V (x)
(

1 + |x|N−α
)

> 0.

In the original Choquard’s equation case N = 3 and α = 2 we include the critical decay case
infx∈R3 V (x)(1+|x|) > 0, which is not covered by the arguments in [50]. On a more technical level
we also remove the boundedness assumptions on V and its derivative and replace the assumption
of the existence of a nondegenerate critical point of V by the existence of a strict local minimum of
V . Our proof of theorem 1 uses variational methods and a novel nonlocal penalization technique
that we develop in this work, which can be thought as a counterpart of the penalization scheme
for the nonlinear Schrödinger equation (1.1) [12, 21, 39].

A bootstrap argument similar to [42, Proposition 4.1] shows that the solutions (uε)ε∈(0,ε0)

constructed in theorem 1 are classical, in the sense that uε ∈ C2(RN ). We emphasize however
that our penalization scheme works entirely at the level of weak solutions and does not require
any additional a-priori regularity.

The assumptions of theorem 1 are optimal in the following sense. First, the condition α ≤ N−4
is justified by the fact that otherwise the limiting equation (P∗) has no finite energy solutions.
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Theorem 2. Let N ∈ N, α ∈ (0, N) and p = 2. Then the limiting equation (P∗) has a nontrivial

solution in the space H1(RN ) ∩ C2(RN ) if and only if α > N − 4.

The sufficiency for the existence of solutions in the above theorem traces back to the work of
P.-L. Lions [32] (see also [25, 34, 42]), the necessity part follows from the Pohožaev identity for
(P∗) [19, lemma 2.1; 36; 42, theorem 2; 43, proposition 3.5]. For α ≤ N − 4 theorem 2 does not
exclude solutions concentrating around a zero of a nonnegative potential. Such solutions were
constructed for the local nonlinear Schrödinger equation [14, 15].

The restriction on the decay of V at infinity when α > N − 2 is optimal in view of a nonlinear
Liouville theorem for supersolutions of (Pε).

Theorem 3 (Moroz and Van Schaftingen [41, theorems 1 and 3]). Let N ∈ N, α ∈ (0, N), p = 2,

V ∈ C(RN ; [0,∞)) and ε > 0. If (Pε) admits a positive distributional supersolution in RN and

α > N − 2, then for every γ > N − α,

lim sup
|x|→∞

V (x)|x|γ > 0.

For the local nonlinear Schrödinger equation the previous two obstructions — nonexistence
of finite-energy solutions to the limiting problem and Liouville theorems in outer domains —
are the only one. For the Choquard equation in the régime α ≥ N − 2 we observe a new and
essentially nonlocal phenomenon of a strong critical potential well: if the potential V vanishes
somewhere in RN \Λ significantly enough, then problem (Pε) does not have a family of solutions
that concentrates inside Λ.

Theorem 4. Let N ∈ N, α ∈ (0, N), p = 2 and V ∈ C(RN ; [0,∞)). Assume that α > N − 2
and, as x → a∗,

(1.2) V (x) = o
(

|x− a∗| 4
α+2−N

−2
)

.

If (uε)ε∈(0,ε0) is a family in H1
loc(R

N ) ∩L2((1 + |x|)−(N−α) dx) of positive solutions of (Pε) then

for every compact set K ⊂ R
N \ {a∗}, as ε → 0,

∫

K

|uε|2 = o(εN ).

In this case, the nonlocal interaction with the critical potential well forces the rescaled mass
to vanish outside a∗.

The borderline case α = N − 2 is the most delicate. We establish a uniform bound on the
rescaled mass.

Theorem 5. Let N ≥ 3, p = 2, V ∈ C(RN ; [0,∞)). Assume that α = N − 2. If V vanishes on

a nonempty open set U ⊂ RN , then there exists a constant C > 0 such that for every positive

solution uε ∈ H1
loc(RN ) ∩ L2((1 + |x|)−2 dx) of (Pε) it holds

1

εN

∫

RN

|uε|2 ≤ C.

If

lim
R→∞

1

RN−2

∫

B2R\BR

V = 0

then for every positive solution uε ∈ H1
loc(RN ) ∩ L2((1 + |x|)−2 dx) of (Pε) it holds

1

εN

∫

RN

|uε|2 ≤ Γ(N−2
2 )πN/22N−2

(N − 2

2

)2

.

If V is compactly supported then

lim sup
|x|→∞

|x|N−2−muε(x) > 0

for some m = m(uε) > 0 [41, proposition 4.13]. In particular, in view of theorem 5 this implies
that (Pε) does not have positive solutions when N = 3, 4. We leave as an open problem whether
theorem 5 in combination with the above decay estimate brings an obstruction for the existence
of concentrating positive solutions in other cases.
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1.3. The locally superlinear case p > 2. The same variational penalization technique in the
case p > 2 gives us the following existence and concentration result.

Theorem 6. Let N ∈ N, α ∈ ((N − 4)+, N), p ∈ (2, N+α
(N−2)+

) and V ∈ C(RN ; [0,∞)). Assume

that either

p > 1 +
max(α, 1 + α

2 )

(N − 2)+

or

lim inf
|x|→∞

V (x)|x|2 > 0.

If Λ ⊂ RN is an open bounded set such that

0 < inf
Λ
V < inf

∂Λ
V,

then problem (Pε) has a family of positive solutions (uε)ε∈(0,ε0) ∈ H1
V (RN ) such that for a family

of points (aε)ε∈(0,ε0) in Λ and for every ρ > 0,

lim
ε→0

V (aε) = inf
Λ
V, lim inf

ε→0
ε−N

∫

Bερ(aε)

|uε|2 > 0, lim
R→∞
ε→0

‖uε‖L∞(RN \BεR(aε)) = 0.

When N ≤ 2, the condition on the potential V is always

lim inf
|x|→∞

V (x)|x|2 > 0.

The assumptions of theorem 6 are again optimal in the following sense. First, the optimality
of the restriction p < N+α

(N−2)+
is justified by the following result for the limiting problem (P∗).

Theorem 7. Let N ∈ N and α ∈ (0, N). Then limiting equation (P∗) has a nontrivial solution

v0 ∈ H1(RN ) ∩ C2(RN ) if and only if p ∈
(

N+α
N , N+α

(N−2)+

)

.

The proof of the existence of a positive solution can be found in [42] (see also [25, 34]). The
necessity of the restrictions on p follows from the adapted Pohožaev identity [19, lemma 2.1; 36;
42, theorem 2; 43, proposition 3.5].

The additional restrictions on the decay of V are optimal in view of the following Liouville
theorem for (Pε).

Theorem 8 (Van Schaftingen and Moroz [41, theorems 1 and 2 and proposition 4.4]). Let

N ∈ N , α ∈ (0, N), p > 2, V ∈ C(RN ; [0,∞)) and ε > 0. If (Pε) admits a positive distributional

supersolution in RN and

p ≤ 1 +
max(α, 1 + α

2 )

(N − 2)+

then for every γ > 2,

lim sup
|x|→∞

V (x)|x|γ > 0.

We observe that when p > 2, there is no strong critical potential well phenomenon similar to
theorems 4 or 5.

1.4. Discussion of the penalization method. In order to construct solutions we develop in
this work a penalization method for the Choquard equation which is inspired by the penaliza-
tion method for the local nonlinear Schrödinger equation (1.1), introduced by M. del Pino and
P. Felmer [21, 22], and by its adaptations to fast-decaying potentials [10–12,23, 38, 39, 57].

Essentially, the penalization method for the local nonlinear Schrödinger equation (1.1) consists
in modifying the nonlinearity for large u and x in such a way that the modified variational problem
becomes well-posed and solutions can be constructed by a standard variational argument [21].
One has then to show that solutions of the penalized problem are small enough for large x, so
that they also solve the original problem. This is usually done by constructing supersolutions
to a linearization of the penalized problem in an outer domain and by using them to estimate
the solutions of the penalized problem by some comparison principle. This penalization scheme
should not be confused with the global penalization scheme of J. Byeon and Z.-Q. Wang which
penalizes globally the L2 norm outside a concentration [15, 17, 19].
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Besides the technical issue of adapting estimates from the nonlinear Schrödinger equation to
the nonlocal Choquard equation, the essential difficulty that we faced in the study of (Pε) by a
penalization method was to find a natural way of cutting off the nonlinearity in order to improve
the compactness properties of the functional while remaining able to prove that when ε > 0
is small, solutions of the penalized problem solve the original equation (Pε). Our penalization
scheme depends on a penalization potential that should be defined adequately for each problem.
Whereas for the local nonlinear Schrödinger equation, the penalization potential was usually
chosen as the largest potential that could be absorbed by the linear part of the operator [39],
for the nonlocal Choquard equation taking a large potential might obstruct the construction of
supersolution of the penalized problem. We introduce a novel approach that works in the oppo-
site direction. We first construct supersolutions of the original equation (Pε) in outer domains
and then derive from them a penalization potential. Such an approach automatically gives su-
persolutions to the linearized problem, while checking that the supersolutions give an admissible
penalization potential and is easier than constructing supersolutions for a given penalization po-
tential. This approach should help to design penalization schemes for large classes of problems
and links the ideas of constructing solutions via supersolutions, and by penalization schemes.

2. The penalized problem

In this section we define the penalized problem and functional and prove the existence of
solutions to the latter.

2.1. Function spaces and inequalities. The linear part of the equation (Pε) with a nonzero
potential V ∈ C(RN ; [0,∞)) induces the norm

‖u‖2
ε :=

∫

RN

(

ε2|∇u|2 + V |u|2
)

.

For a nonempty open set Ω ⊆ RN , we denote by H1
V,0(Ω) the Hilbert space obtained by comple-

tion of the set of smooth test functions C∞
c (Ω) with respect to the norm ‖·‖ε. The completion

is independent of ε > 0. If Ω = RN we simply write H1
V (RN ).

For N ≥ 3 the Sobolev inequality implies that H1
V,0(Ω) ⊂ L

2N
N−2 (Ω). If N ≤ 2 and V = 0

then the space H1
V (RN ) cannot be identified as a space of measurable functions or a space of

distributions (see [46, Section 1] for a discussion). However, if N ≤ 2 and infU V > 0 for an
open set U ⊂ R

N then the space H1
V (RN ) is continuously embedded into L2(RN , H(x) dx) with

a suitable weight H ∈ C(RN ; (0,∞)), see [39, Section 6.1] for the details in the case N = 2 (the
case N = 1 can be treated similarly).

We shall review several functional inequalities on this space which are used in the sequel. The
first inequality is a rescaled Sobolev inequality.

Proposition 2.1 (Rescaled Sobolev inequality). Assume that either N ≥ 3 and 1
2 − 1

N ≤ 1
q ≤ 1

2

or N ∈ {1, 2} and 0 < 1
q ≤ 1

2 . If Λ ⊂ RN is a bounded open set and infΛ V > 0, then for every

ϕ ∈ H1
V (RN ),

∫

Λ

|ϕ|q ≤ C

εN( q

2 −1)

(

∫

RN

ε2|∇ϕ|2 + V |ϕ|2
)

q
2

,

where C > 0 depends only on α, N and Λ.

When lim inf |x|→∞ V (x)|x|2 > 0, proposition 2.1 is a simple case of a general inequality by
A. Ambrosetti, V. Felli and A. Malchiodi [4, proposition 7]; we give a short proof in our setting.

Proof of proposition 2.1. We take a cut-off function η ∈ C∞
c (RN ) such that η = 1 on Λ̄ and

infsupp η V > 0. By the classical Sobolev inequality, we estimate
∫

Λ

|ϕ|q ≤
∫

RN

|ηϕ|q ≤ CεN(1− 2
q

)
(

∫

RN

(

ε2|∇(ηϕ)|2 + |ηϕ|2
)

)

q
2

≤ C′CεN(1− 2
q

)
(

∫

RN

ε2|∇ϕ|2 + V |ϕ|2
)

q
2

. �

In order to control the nonlocal term in the problem (Pε) we will use the classical Hardy–
Littlewood–Sobolev inequality.
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Proposition 2.2 (Hardy–Littlewood–Sobolev inequality, [31, theorem 4.3]). Let N ∈ N, α ∈
(0, N) and s ∈ (1, N

α ). If ϕ ∈ Ls(RN ), then Iα ∗ ϕ ∈ L
Ns

N−αs (RN ) and
∫

RN

|Iα ∗ ϕ| Ns
N−αs ≤ C

(

∫

RN

|ϕ|s
)

N
N−αs

,

where C > 0 depends only on α, N and s.

We shall also rely on a weighted Hardy–Littlewood–Sobolev inequality.

Proposition 2.3 (Weighted Hardy–Littlewood–Sobolev inequality, [51]). Let N ∈ N and α ∈
(0, N). If ϕ ∈ L2(RN , |x|α dx), then Iα

2
∗ ϕ ∈ L2(RN ) and

∫

RN

∣

∣Iα
2

∗ ϕ
∣

∣

2 ≤ Cα

∫

RN

|ϕ(x)|2|x|α dx,

where Cα = 1
2α

(

Γ( N−α
4 )

Γ( N+α
4 )

)2

.

This optimal constant Cα was computed by I. Herbst [26, theorem 2.5]. See also [40] for a
simplified proof and further references.

2.2. Definition of the penalized functional. In what follows we fix the potential V ∈
C(RN ; [0,∞)) and a bounded nonempty open set Λ ⊂ RN such that

inf
∂Λ
V > inf

Λ
V > 0.

Without loss of generality we can assume that the boundary of Λ is smooth, and that 0 ∈ Λ.
We choose a family of penalization potentials Hε ∈ L∞(RN , [0,∞)) for ε > 0 in such a way

that Hε(x) = 0 for all x ∈ Λ, and

(2.1) lim
ε→0

sup
RN \Λ

Hε = 0.

The explicit construction of Hε will be described later, in section 4. Before that, we shall only
rely on the following two assumptions on Hε:

(H1) the space H1
V (RN ) is compactly embedded in L2(RN ,

(

Hε(x)2|x|α + χΛ(x)) dx
)

,

(H2) there exists κ > 0 such that Cαpκ < 1 and for every ϕ ∈ H1
V (RN ),

1

εα

∫

RN

|Hε(x)ϕ(x)|2|x|α dx ≤ κ

∫

RN

ε2|∇ϕ|2 + V |ϕ|2,

where Cα > 0 is the optimal constant in the weighted Hardy–Littlewood–Sobolev in-
equality of proposition 2.3.

The condition (H2) can be seen as a Hardy type inequality with a constant bounded uniformly
with respect to ε. The assumption (H2) via proposition 2.3 implies that the associated to Hε

nonlocal quadratic form is well–defined on the space H1
V (RN ) and for every ϕ ∈ H1

V (RN ),

p

εα

∫

RN

∣

∣Iα
2

∗ (Hεϕ)
∣

∣

2 ≤ (1 − δ)

∫

RN

ε2|∇ϕ|2 + V |ϕ|2,

where δ = 1 − Cαpκ > 0.
Given a penalization potential Hε which satisfies (H1) and (H2), we define the penalized

nonlinearity gε : RN × R → R for x ∈ RN and s ∈ R by

gε(x, s) := χΛ(x)sp−1
+ + χRN \Λ(x) min

(

sp−1
+ , Hε(x)

)

.

We also denote Gε(x, s) =
∫ s

0 gε(x, t) dt. The function gε is a Carathéodory function which satisfy
the following properties:

(g1) for every x ∈ RN and s ∈ R, gε(x, s) ≤ sp−1
+ ,

(g2) for every s ∈ R and x ∈ RN ,

0 ≤ gε(x, s)s ≤ sp
+χΛ +Hε(x)s+(1 − χΛ),

0 ≤ Gε(x, s) ≤ 1

p
sp

+χΛ +Hε(x)s+(1 − χΛ),
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(g3) for every s ∈ R and x ∈ RN ,

0 ≤ Gε(x, s) ≤ gε(x, s)s,

and for every x ∈ Λ,

0 ≤ pGε(x, s) = gε(x, s)s.

We define the penalized superposition operators gε and Gε for u : RN → R and x ∈ RN by

gε(u)(x) = gε

(

x, u(x)
)

and Gε(u)(x) = Gε

(

x, u(x)
)

,

and the penalized functional Jε : H1
V (RN ) → R for u ∈ H1

V (RN ) by

Jε(u) =
1

2

∫

RN

(

ε2|∇u|2 + V |u|2
)

− p

2εα

∫

RN

∣

∣Iα
2

∗ Gε(u)
∣

∣

2
.

Lemma 2.4 (Elementary properties of the penalized functional). If 1 < p < N+α
(N−2)+

and the

assumption (H1) holds, then Jε ∈ C1(H1
V (RN ),R) and for every u ∈ H1

V (RN ) and ϕ ∈ H1
V (RN ),

〈J ′
ε(u), ϕ〉 =

∫

RN

(

ε2(∇u|∇ϕ) + V uϕ
)

− p

εα

∫

RN

(

Iα ∗ Gε(u)
)

gε(u)ϕ.

Here 〈·, ·〉 denotes the duality product between the dual spaceH1
V (RN )′ and the spaceH1

V (RN ).
In particular, u ∈ H1

V (RN ) is a critical point of Jε if and only if u is a weak solution of the
penalized equation

(Qε) − ε2∆u+ V u = pε−α
(

Iα ∗ Gε(u)
)

gε(u) in R
N .

Proof of lemma 2.4. We only need to consider the nonlocal part of Jε,

Nε(u) =

∫

RN

∣

∣Iα
2

∗ Gε(u)
∣

∣

2
.

Since (N−2)+

N+α < 1
p , the classical Sobolev embedding and the assumption (H1) imply that the space

H1
V (RN ) is continuously embedded into the direct sum L2(RN \Λ, Hε(x)2|x|α dx)⊕L2Np/(N+α)(Λ)

which is naturally isomorphic to a Banach spaces of measurable functions on R
N , it is sufficient

to prove the continuous Fréchet differentiability on the latter space.
By the growth assumption (g2) and standard continuity properties of superposition operators

(see for example [7, theorem 2.2; 9, theorem 3.1; 47, proposition B.1; 55, Theorem A.4]), the
nonlinear superposition operator

Gε : L2(RN \ Λ, Hε(x)2|x|α dx) ⊕ L
2Np

N+α (Λ) → L2(RN \ Λ, |x|α dx) ⊕ L
2N

N+α (Λ)

is continuous. In view of the classical and weighted Hardy–Littlewood–Sobolev inequalities of
propositions 2.2 and 2.3, the Riesz potential integral operator

f ∈ L2(RN \ Λ, |x|α dx) ⊕ L
2N

N+α (Λ) 7→ Iα
2

∗ f ∈ L2(RN )

is a continuous linear operator. We deduce therefrom that Nε : H1
V (RN ) 7→ R is continuous by

composition.
For the differentiability, we observe first that the map Nε is Gâteaux–differentiable on the

space L2(RN \ Λ, Hε(x)2|x|α dx) ⊕ L2Np/(N+α)(Λ) and that its Gâteaux derivative N ′
ε satisfies

for every u, ϕ ∈ L2(RN \ Λ, Hε(x)2|x|α dx) ⊕ L2Np/(N+α)(Λ),

〈N ′
ε(u), ϕ〉 =

∫

RN

(

Iα ∗ Gε(u)
)

gε(u)ϕ.

By our observations on Iα/2 above and by duality, the convolution with Iα = Iα/2 ∗ Iα/2 is a

bounded linear operator from L2(RN \ Λ, |x|α dx) ⊕ L2N/(N+α)(Λ) to L2(RN \ Λ, |x|−α dx) ⊕
L2N/(N−α)(Λ), and thus the nonlinear operator

u ∈ L2(RN \ Λ, Hε(x)2|x|α dx) ⊕ L
2Np
N+α (Λ) 7→ Iα ∗ Gε(u) ∈ L2(RN \ Λ, |x|−α dx) ⊕ L

2N
N−α (Λ)

is continuous. By the growth assumption (g2) and by our hypothesis (H1) on the penaliza-
tion potential, the nonlinear superposition operator gε is continuous from L2Np/(N+α)(Λ) to

L2Np/((N+α)(p−1))(Λ). Since gε is a Carathéodory function, the superposition operator gε is con-

tinuous from L2(RN \ Λ, Hε(x)2|x|α dx) to the set of measurable functions on RN \ Λ with the



SEMI-CLASSICAL STATES FOR THE CHOQUARD EQUATION 9

topology of convergence in measure on finite-measure sets. Since |gε(u)| ≤ Hε in RN \ Λ, we
conclude by Lebesgue’s dominated convergence theorem that the nonlinear operator

u ∈ L2(RN \ Λ, |x|α dx) ⊕ L
2Np
N+α (Λ)

7→ (Iα ∗ Gε(u))gε(u) ∈ L2(RN \ Λ, Hε(x)−2|x|−α dx) ⊕ L
2Np

(2N−1)p−α (Λ)

is continuous. The map Nε is continuously Gâteaux differentiable on L2(RN \Λ, Hε(x)2|x|α dx)⊕
L2Np/(N+α)(Λ). Hence it is continuously Fréchet differentiable on that space [7, theorem 1.9;
49, lemma 1.15; 55, proposition 1.3] and the conclusion follows. �

The difficulty in this proof is that the superposition operator

Gε : L2(RN \ Λ, Hε(x)2|x|α dx) → L2(RN \ Λ, |x|α dx)

is not Fréchet differentiable [9, section 3.6].

2.3. Existence of solutions of the penalized problem. We now construct solutions to the
penalized problem (Qε) as critical points of the penalized functional Jε.

Proposition 2.5 (Existence of solutions of the penalized problem). If 1 < p < N+α
(N−2)+

and the

assumptions (H1) and (H2) hold, then problem (Qε) has a nonnegative solution uε ∈ H1
V (RN ).

Moreover,

Jε(uε) = cε := inf
γ∈Γε

max
t∈[0,1]

Jε

(

γ(t)
)

> 0,

where Γε :=
{

γ ∈ C([0, 1], H1
V (RN )) | γ(0) = 0,Jε

(

γ(1)
)

< 0
}

.

We call every critical point u ∈ H1
V (RN ) of Jε such that Jε(u) = cε a ground state solution

of problem (Qε).
In order to prove proposition 2.5 in the rest of this section, we will show that the penalized

functional Jε has a mountain–pass geometry and satisfies the Palais–Smale condition, thus ful-
filling the assumptions of the mountain-pass lemma [8, theorem 2.1; 47, theorem 2.2; 52, theorem
6.1; 55, theorem 2.10].

Lemma 2.6 (Mountain–pass geometry). Assume that 1 < p < N+α
(N−2)+

and (H2) holds. Then

the functional Jε is unbounded from below and u = 0 is a strict local minimum of Jε.

Proof. To see that the functional Jε is unbounded from below, we choose ϕ ∈ C∞
c (Λ, [0,+∞)) \

{0} and we observe that Jε(τϕ) → −∞ as τ → ∞.
Next we show that 0 is a strict local minimum of Jε. Let u ∈ H1

V (RN ). By the growth
assumption (g2), we have in RN ,

∣

∣Iα
2

∗ Gε(u)
∣

∣ ≤ 1

p

∣

∣Iα
2

∗ (χΛu
p
+)

∣

∣ + |Iα
2

∗ (Hεu+)|.

In view of the Young inequality, we obtain for any λ > 0

(2.2)
p

2εα

∫

RN

∣

∣Iα
2

∗ Gε(u)
∣

∣

2 ≤ 1 + λ

2pεα

∫

RN

∣

∣Iα
2

∗ (χΛu
p
+)

∣

∣

2
+

p

2εα

(

1 +
1

λ

)

∫

RN

∣

∣Iα
2

∗ (Hεu+)
∣

∣

2
.

Since 1 < p ≤ N+α
N−2 , using the classical Hardy–Littlewood–Sobolev (proposition 2.2) and the

rescaled Sobolev inequality (proposition 2.1), we obtain

p

2εα

∫

RN

∣

∣Iα
2

∗ (χΛu
p
+)

∣

∣

2 ≤ C

εα

(
∫

Λ

|u| 2Np

N+α

)

N+α
N

≤ C′

ε(p−1)N

(

∫

RN

ε2|∇u|2 + V |u|2
)p

.

Using the weighted Hardy–Littlewood–Sobolev inequality (proposition 2.3) and the assumption
(H2), we have

p

εα

∫

RN

|Iα
2

∗Hεu+|2 ≤ Cαpκ

∫

RN

(

ε2|∇u|2 + V |u|2
)

,
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where Cαpκ < 1. We now choose λ > 0 in the bound (2.2) so that Cαpκ
(

1 + 1
λ

)

< 1. Then from
(2.2) we obtain

Jε(u) ≥ 1

2

∫

RN

(

ε2|∇u|2 + V |u|2
)

− p

2εα

(

1 +
1

λ

)

∫

RN

∣

∣Iα
2

∗ (Hεu+)
∣

∣

2 − 1 + λ

2pεα

∫

RN

∣

∣Iα
2

∗ (χΛu
p
+)

∣

∣

2

≥ 1

2

(

1 − Cαpκ
(

1 +
1

λ

)

)

∫

RN

(

ε2|∇u|2 + V |u|2
)

− C′′

ε(p−1)N

(

∫

RN

ε2|∇u|2 + V |u|2
)p

,

the assertion follows since p > 1. �

Lemma 2.7 (Coerciveness property). Assume that 1 < p < N+α
(N−2)+

and (H2) holds. For every

κ < 1
Cαp , there exists Cκ,p > 0 and λκ,p > 0 such that for every u ∈ H1

V (RN ).
∫

RN

(

ε2|∇u|2 + V |u|2
)

≤ Cκ,pJε(u) + λκ,p〈J ′
ε(u), u〉.

Note that the constant does not depend on the potential V , the set Λ or the penalization
potential Hε except via κ. This lemma will imply in particular the boundedness of Palais-Smale
sequences.

Proof of lemma 2.7. Given θ such that 1
2p < θ < 1

2 , we shall estimate

J :=
(1

2
− θ

)

∫

RN

(

ε2|∇u|2 + |u|2
)

− Jε(u) + θ〈J ′
ε(u), u〉

=
p

2εα

∫

RN

(

Iα ∗ Gε(u)
)(

Gε(u) − 2θgε(u)u
)

.

If θ ≥ 1
2p , we obtain, as Gε(u) − 2θgε(u)u =

(

1
p − 2θ

)

up
+ on Λ,

p

2

∫

Λ

(

Iα ∗ Gε(u)
)(

Gε(u)(y) − 2θgε(u)(y)u
)

≤ −
(

θ − 1

2p

)

∫

Λ

(

Iα ∗ (χΛu
p
+)

)

up
+.

On the other hand, if θ ≤ 1
2 then Gε(u) − 2θgε(u)u ≤ (1 − 2θ)Hεu+ on RN \ Λ, and therefore,

p

2

∫

RN \Λ

(

Iα ∗ Gε(u)
)(

Gε(u) − 2θgε(u)u
)

≤ p
(1

2
− θ

)

∫

RN \Λ

(

Iα ∗ Gε(u)
)

Hεu+

≤
(1

2
− θ

)

∫

RN \Λ

(

Iα ∗ (χΛu
p
+)

)

Hεu+ + p
(1

2
− θ

)

∫

RN \Λ

(

Iα ∗Hεu+

)

Hεu+

By the Cauchy–Schwarz inequality, we deduce that

J ≤ −
(

θ − 1

2p

)

∫

RN

∣

∣Iα
2

∗ (χΛu
p
+)

∣

∣

2

+
(1

2
− θ

)(

∫

RN

∣

∣Iα
2

∗ (χΛu
p
+)

∣

∣

2
)

1
2
(

∫

RN

∣

∣Iα
2

∗ (Hεu+)
∣

∣

2
)

1
2

+ p
(1

2
− θ

)

∫

RN

∣

∣Iα
2

∗ (Hεu+)
∣

∣

2
.

The right-hand side is quadratic in
(∫

RN

∣

∣Iα
2

∗ (χΛu
p
+)

∣

∣

2)1/2
and can thus be estimated to obtain

the inequality

J ≤
(1

2
− θ

)(

p+
1
2 − θ

4(θ − 1
2p )

)

∫

RN

∣

∣Iα
2

∗ (Hεu+)
∣

∣

2
.

In view of the assumption (H2), we have thus proved that

(1

2
− θ

)

(

1 − Cακ
(

p+
1
2 − θ

4(θ − 1
2p )

)

)
∫

RN

(

ε2|∇u|2 + |u|2
)

≤ Jε(u) + θ〈J ′
ε(u), u〉.
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We conclude by observing that if Cακp < 1, then when θ is sufficiently close to 1
2 ,

(1

2
− θ

)

(

1 − Cακ
(

p+
1
2 − θ

4(θ − 1
2p )

)

)

> 0. �

Lemma 2.8 (Palais-Smale condition). Assume that 1 < p < N+α
(N−2)+

and (H1), (H2) holds. If

(un) is a Palais-Smale–sequence in H1
V (RN ) for the functional Jε, that is, for some c ∈ R,

Jε(un) → c and J ′
ε(un) → 0.

then, up to a subsequence, (un) converges strongly to a limit u ∈ H1
V (RN ).

Proof. Lemma 2.7 implies in a standard way that the Palais–Smale sequence (un)n∈N is bounded
in H1

V (RN ). It follows that 〈J ′
ε(un), un〉 → 0 and that, up to a subsequence, un ⇀ u ∈ H1

V (RN )
as n → ∞. By our compactness assumption (H1) and by the Rellich–Kondrachov compactness
theorem (see for example [1, theorem 6.2; 31, theorem 8.9; 56, theorem 6.4.6]) we conclude that,
as n → ∞,

un → u in L2(RN \ Λ, H2(x)|x|α dx) ⊕ L
2Np

N+α (Λ).

From the property (g2) of the nonlinearity it follows in a standard way that Gε as well as
the superposition operator u 7→ gε(u)u are bounded and continuous operators from L2(RN \
Λ, H2(x)|x|α dx) ⊕ L

2Np
N+α (Λ) into L2(RN \ Λ, |x|α dx) ⊕ L

2N
N+α (Λ) (see the proof of lemma 2.4),

so we have, as n → ∞,

Gε(un) → Gε(u) and gε(un)un → gε(u)u in L2(RN \ Λ, |x|α dx) ⊕ L
2N

N+α (Λ).

By the classical and weighted Hardy–Littlewood–Sobolev inequalities of propositions 2.2 and 2.3
we conclude that, as n → ∞,

Iα
2

∗ Gε(un) → Iα
2

∗ Gε(u) and Iα
2

∗ (gε(un)un) → Iα
2

∗ (gε(u)u) in L2(RN ).

Since un ⇀ u ∈ H1
V (RN ) and 〈J ′(un), un〉 → 0 as n → ∞, we estimate

lim sup
n→∞

∫

RN

(

ε2|∇un − ∇u|2 + V |un − u|2
)

= lim sup
n→∞

∫

RN

(

ε2|∇un| + V |un|2
)

−
∫

RN

(

|∇u|2 + V |u|2
)

≤ lim sup
n→∞

p

εα

∫

RN

(

Iα
2

∗ Gε(un)
) (

Iα
2

∗ gε(un)un

)

− p

εα

∫

RN

(

Iα
2

∗ Gε(u)
) (

Iα
2

∗ gε(u)u
)

= 0,

which completes the proof. �

The same argument as above shows that the mapping u 7→ J ′
ε(u) is completely continuous

from H1
V (RN ) →

(

H1
V (RN )

)∗
, that is, J ′

ε maps bounded sets to precompact sets.

Proof of proposition 2.5. Since Jε is continuously Fréchet differentiable (lemma 2.4), has the
mountain–pass geometry (lemma 2.6) and satisfies the Palais-Smale condition (lemma 2.8), all
the assumptions of the mountain–pass lemma are satisfied [8, theorem 2.1; 47, theorem 2.2;
52, theorem 6.1; 55, theorem 2.10], and thus Jε admits a critical point uε ∈ H1

V (RN ) at the
critical level cε. Moreover, uε ∈ H1

V (RN ) is a solution of (Qε) Also, since −ε2 + ∆uε + V uε ≥ 0
in RN , by the weak maximum principle for weak solutions we have uε ≥ 0 in RN . �

3. Asymptotics of solutions of the penalized problem

3.1. The limiting problem. For λ > 0, the limiting problem associated to our problem (Pε) is

(Rλ) − ∆v + λv =
(

Iα ∗ |v|p
)

|v|p−2v in R
N ,

and the corresponding limiting functional is Iλ : H1(RN ) → R defined for v ∈ H1(RN ) by

Iλ(v) =
1

2

∫

RN

|∇v|2 + λ|v|2 − 1

2p

∫

RN

∣

∣Iα
2

∗ |v|p
∣

∣

2
.
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By the Hardy–Littlewood–Sobolev inequality (proposition 2.2), the functional Iλ is well-defined
on the space H1(RN ) for p ∈ [1,∞) such that N+α

N ≤ p ≤ N+α
(N−2)+

. We define the limiting energy

by

(3.1) E(λ) = inf
v∈H1(RN )\{0}

max
t>0

Iλ(tv).

Since for every v ∈ H1(RN ), Iλ(|v|) = Iλ(v), the functional Iλ is continuous and the set of
compactly supported smooth functions C∞

c (RN ) is dense in its domain H1(RN ),

(3.2) E(λ) = inf
v∈C∞

c (RN )\{0}
v≥0

max
t>0

Iλ(tv).

The following proposition provides information about the homogeneity of Iλ.

Proposition 3.1 (Scaling of the limiting problem). Let λ > 0 and v ∈ H1(RN ). If vλ ∈ H1(RN )
is defined for every y ∈ RN by

vλ(y) = λ
α+2

4(p−1) v(
√
λ y),

then

Iλ(vλ) = λ
α+2

2(p−1)
− N−2

2 I1(v1).

In particular, v is a solution of (R1) if and only if vλ is a solution of (Rλ) and

E(λ) = E(1)λ
α+2

2(p−1)
− N−2

2 .

In particular, if E is continuous and, since p < N+α
N−2 , is increasing on (0,∞).

Proof of proposition 3.1. The proof is a direct computation. �

The existence of solutions of Choquard equation (R1) was proved for p = 2 by variational
methods by E. H. Lieb, P.-L. Lions and G. Menzala [30, 32, 35]. It was studied again later with
ordinary differential equations techniques [37, 53]. The existence and qualitative properties of
positive ground state solutions of (R1) for an optimal range of p > 1 (see theorem 7 above) were
studied in [42] (see also [43]).

We finally define the concentration function C : RN → R for every x ∈ RN by

(3.3) C(x) = E
(

V (x)
)

,

where E(λ) is the ground state energy level of the limiting problem (Rλ), as defined in (3.1).

3.2. Upper bound on the energy. We begin our study of the asymptotics of solutions by an
upper bound on the mountain-pass level.

Lemma 3.2 (Upper bound on the energy). One has

lim sup
ε→0

cε

εN
≤ inf

Λ
C.

By the coerciveness property of lemma 2.7, the upper bound of lemma 3.2 implies immediately
that if (uε)ε>0 is a family of groundstates of (Qε), then

(3.4) lim sup
ε→0

1

εN

∫

RN

ε2|∇uε|2 + V |uε|2 < ∞.

Proof of lemma 3.2. Given a ∈ Λ and a nonnegative function v ∈ C∞
c (RN ) \ {0}, we define for

every ε > 0 the function vε ∈ C∞
c (RN ) \ {0} for each x ∈ RN by

vε(x) = v
(x− a

ε

)

Since v is compactly supported and the potential V is continuous at a,

lim
ε→0

1

εN

∫

RN

(

ε2|∇vε|2 + V |vε|2
)

=

∫

RN

(

|∇v|2 + V (a)|v|2
)

+ lim
ε→0

∫

RN

(

V (a+ εy) − V (a)
)

|v(y)|2

=

∫

RN

(

|∇v|2 + V |v|2
)

,
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as ε → 0.
On the other hand, since the function v is nonnegative and compactly supported and the set

Λ is open, for ε > 0 small enough, supp vε ⊂ Λ and

p

2εN+α

∫

RN

∣

∣Iα
2

∗ Gε(vε)
∣

∣

2
=

p

2εN+α

∫

RN

∣

∣Iα
2

∗ (vε)p
+

∣

∣

2
=
p

2

∫

RN

∣

∣Iα
2

∗ vp
+

∣

∣

2
=
p

2

∫

RN

∣

∣Iα
2

∗ |v|p
∣

∣

2
.

We define the path γε ∈ C([0,∞), H1
V (RN )) for τ ≥ 0 by γε(τ) = τvε. It is clear that γε ∈ Γε

after appropriate reparametrisation, and

lim sup
ε→0

cε

εN
≤ sup

t∈[0,1]

Jε

(

γ(t)
)

εN
≤ max

τ≥0
IV (a)(τv) + o(1)

(the set of paths Γε and cε were defined in the statement of proposition 2.5). By taking the
infimum over v ∈ C∞

c (RN ), we obtain in view of the characterization (3.2) of the limiting energy
E(V (a)) and of the definition of the concentration function C,

cε ≤ E
(

V (a)
)

= C(a),

and we conclude by taking the infimum over a ∈ Λ. �

3.3. Lower bound on the energy. In order to understand the behaviour of families of solutions
we will rely on a some lower bound on the energy of a sequence of solutions concentrating along
a sequence of points.

Proposition 3.3. Let (εn)n∈N be a sequence of positive numbers converging to 0, let (un)n∈N be

a sequence of nonnegative solutions in H1
V (RN ) of (Qεn

), and for j ∈ {1, . . . , k}, let (aj
n)n∈N be

a sequence in RN that converges to aj
∗ ∈ RN . If for every j ∈ {1, . . . , k}, V (aj

∗) > 0, for every

ℓ ∈ {1, . . . , k} \ {j},

lim
n→∞

|aj
n − aℓ

n|
εn

= ∞,

and for some ρ > 0,

lim inf
n→∞

‖un‖L∞(Bεnρ(aj
n)) + ε−α

n ‖Iα ∗ Gεn
(un)‖L∞(Bεnρ(aj

n)) > 0,

then aj
∗ ∈ Λ̄ and

lim inf
n→∞

Jε(un)

εN
n

≥
k

∑

j=1

C(aj
∗).

In the proof of proposition 3.3, we shall rely on a the C∞–convergence of Riesz potentials far
from the support of the density.

Proposition 3.4. Assume that (fn)n∈N is a sequence in Lq(RN ; |x|β dx) and that fn ⇀ f in

Lq(RN ; |x|β dx) as n → ∞. If for every n ∈ N, fn = 0 on BR and if αq < N + β, then for every

k ∈ N,

Dk(Iα ∗ fn) → Dk(Iα ∗ f)

uniformly on every compact subset of BR.

Proof. Let K ⊂ BR be compact. For every k ∈ N and x ∈ K, we estimate by the Hölder
inequality

|Dk(Iα ∗ fn)(x)| ≤ C

∫

RN \BR

1

|x− y|N−α+k
|fn(y)| dy

≤ C′

∫

RN \BR

1

|y|N−α+k
|fn(y)| dy

≤ C′
(

∫

RN \BR

1

|y|
q(N−α+k)+β

q−1

dy
)1− 1

q
(

∫

RN

|fn(y)|q|y|β dy
)

1
q

.

Since N + β > αq
∫

RN \BR

1

|y|
q(N−α+k)+β

q−1

dy < ∞,

and the conclusion follows from a standard application of Ascoli’s compactness criterion. �
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We will also use a Liouville theorem for problems penalized on a half-space.

Lemma 3.5. Let H ⊂ RN be a half-space. Assume that N+α
N < p < N+α

(N−2)+
. If v ∈ H1(RN )

satisfies the equation

−∆v + λv =
(

Iα ∗ (χHv
p
+)

)

χHv
p−1
+ in R

N ,

then v = 0.

Proof. By a linear isometric change of variable, we can assume that H = RN−1 × (0,∞). In view
of a regularity argument similar to [42, proposition 4.1], v ∈ H2(RN ) and in particular, ∂Nv is
an admissible test function in the equation. We obtain then by testing the equation against ∂Nv

0 =
1

p

∫

RN−1×(0,∞)

∫

RN−1×(0,∞)

Iα(x− y)
(

v(y)
)p

+

(

∂N (v)p
+

)

(x) dxdy

=
1

p

∫

RN−1

∫

RN−1×(0,∞)

Iα

(

(z, 0) − y
)(

v(z)
)p

+

(

v(y)
)p

+
dz dy.

We deduce therefrom that either v = 0 on RN−1 × {0} or v = 0 on RN−1 × (0,∞). We conclude
by the strong maximum principle. �

Proof of proposition 3.3. We can assume without loss of generality that

lim inf
n→∞

Jε(un)

εN
n

= lim sup
n→∞

Jε(un)

εN
n

< ∞.

By the coerciveness of the functional Jεn
on critical points (lemma 2.7), this implies that

lim sup
n→∞

1

εN
n

∫

RN

ε2
n|∇un|2 + V |un|2 < ∞.

We define for every n ∈ N and j ∈ {1, . . . , k} the rescaled solution vj
n ∈ H1

loc(RN ) for every
y ∈ R

N by
vj

n(y) = un(aj
n + εny).

Since un solves the penalized problem (Qεn
), the function vj

n satisfies weakly the rescaled equation

−∆vj
n + V j

n v
j
n =

(

Iα ∗ Gj
n(vj

n)
)

g j
n(vj

n) in R
N ,

where for y ∈ RN and s ∈ R, the rescaled potential and nonlinearities are defined by Vn(y) =
V (an + εny),

gj
n(y, s) = gεn

(aj
n + εny, s), Gj

n(y, s) = Gεn
(aj

n + εny, s),

and g j
n and Gj

n are the corresponding nonlinear superposition operators.
For every R > 0, a change of variable shows that

∫

BR

|∇vj
n|2 + V j

n |vj
n|2 =

1

εN
n

∫

BεnR(aj
n)

ε2
n|∇un|2 + V |un|2.

Since V is positive and continuous at aj
∗ = limn→∞ aj

n, we have

lim
n→∞

∫

BR

V j
n |vj

n|2
∫

BR

V (aj
∗)|vj

n|2
= 1,

and therefore

lim inf
n→∞

∫

BR

|∇vj
n|2 + V (aj

∗)|vj
n|2 ≤ lim inf

n→∞

1

εN
n

∫

RN

ε2
n|∇un|2 + V |un|2.

By taking a subsequence if necessary and by a diagonal argument, there exists vj
∗ ∈ H1

loc(RN )

such that for every R > 0, vj
n ⇀ vj

∗ weakly in H1(BR) as n → ∞ and
∫

BR

|∇vj
∗|2 + V (a∗)|vj

∗|2 ≤ lim inf
n→∞

1

εN
n

∫

RN

ε2
n|∇un|2 + V |un|2 < ∞.

This implies in particular that vj
∗ ∈ H1(RN ). Moreover, by the Rellich–Kondrachov compactness

theorem (see for example [1, theorem 6.2; 31, theorem 8.9; 56, theorem 6.4.6]), for every q ≥ 1

such that 1
q >

1
2 − 1

N and for every R > 0, we have vj
n → vj

∗ in Lq(BR) as n → ∞.
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Defining for n ∈ N and j ∈ {1, . . . , k} the rescaled sets

Λj
n = {y ∈ R

N : aj
n + εny ∈ Λ},

and taking into account the smoothness of the boundary of Λ, we can assume that χΛj
n

→ χΛj
∗

almost everywhere as n → ∞, where Λj
∗ is either RN , a half-space or ∅.

Observe that for every x ∈ RN and s ∈ R, by (2.1), limn→∞ gn(x, s) = χΛ∗
(x)sp−1

+ and

for every n ∈ N, it holds by (2.2) that |g j
n(vj

n)| ≤ (vj
n)p−1

+ and thus by Lebesgue’s dominated
convergence theorem,

g j
n(vj

n) → χΛj
∗

(vj
∗)p−1

+ in Lq(B2R) with 1
q > (p− 1)(1

2 − 1
N )(3.5)

and

pGj
n(vj

n) → χΛj
∗

(vj
∗)p

+ in Lq(B2R) with 1
q > p(1

2 − 1
N ).

By the Hardy–Littlewood–Sobolev inequality (proposition 2.2), this implies that

pIα ∗
(

χB2R
G

j
n(vj

n)
)

→ Iα ∗
(

χB2R∩Λj
∗

(vj
∗)p

+

)

in Lq(BR) with 1
q > p(1

2 − 1
N ) − α

N .(3.6)

By definition of the rescaled penalized nonlinearity Gj
n and by the rescaled Sobolev inequality

(proposition 2.1), since N−2
N+α ≤ 1

p ≤ N
N+α , we have

∫

Λj
n

|Gj
n(vj

n)| 2N
N+α ≤ 1

εN
n

∫

Λ

|un| 2Np
N+α dx ≤

( 1

εN
n

∫

RN

ε2|∇un|2 + V |un|2
)

Np

N+α

.

Since Gj
n(vj

n) → 1
pχΛj

∗

(vj
∗)p

+ in L
2N

N+α

loc (RN ), as n → ∞,

χΛj
n

Gj
n(vj

n) ⇀
1

p
χΛj

∗

(vj
∗)p

+ in L
2N

N+α (RN ).

By proposition 3.4 with q = 2N
N+α and β = 0, we have, as n → ∞,

pIα ∗
(

χΛj
n\B2R

G
j
n(vj

n)
)

→ Iα ∗
(

χΛj
∗

\B2R
(vj

∗)p
+

)

in L∞(BR).(3.7)

Finally, by (H2),
∫

RN \Λj
n

|Gj
n(y, vj

n(y))|2|y|α dx =
1

εN−α
n

∫

RN \Λ

|Gεn
(x, un(x))|2|x− aj

n|α dx

≤ 1

εN−α
n

(

sup
x∈RN \Λ

|x− aj
n|

|x|
)α

∫

RN \Λ

|Hεn
(x)un(x)|2|x|α dx

≤ κ

εN
n

(

sup
x∈RN \Λ

|x− aj
n|

|x|
)α

∫

RN \Λ

(

ε2
n|∇un|2 + V |un|2

)

.

Since Gj
n(vj

n)χ
RN \Λj

n
→ 0 in L2

loc(R
N ), we have by proposition 3.4, as n → ∞,

pIα ∗
(

χ
RN \(Λj

n∪B2R)Gj
n(vj

n)
)

→ 0 in L∞(BR).(3.8)

Summarizing (3.6), (3.7) and (3.8), we obtain, as n → ∞,

pIα ∗ Gj
n(vj

n) → Iα ∗
(

χΛj
∗

(vj
∗)p

+

)

in Lq(BR) with 1
q > p(1

2 − 1
N ) − α

N .

In view of (3.5), we have, as n → ∞,

(3.9) p
(

Iα ∗ G
j
n(vj

n)
)

g
j
n(vj

n) →
(

Iα ∗ χΛj
∗

(vj
∗)p

+

)

χΛj
∗

|vj
∗|p−2vj

∗

in Lq(BR) with 1
q >

(

p(1
2 − 1

N ) − α
N

)

+
+

(

(p− 1)(1
2 − 1

N )
)

+
.

Since 1
p ≥ N−2

N+α , we can take q = 1 and vj
∗ satisfies

−∆vj
∗ + V (aj

∗)vj
∗ =

(

Iα ∗ χΛj
∗

(vj
∗)p

+

)

χΛj
∗

(vj
∗)p−1

+ .
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By the adaptation of the classical bootstrap argument adapted to the Choquard equation (see

[42, proposition 4.1]), vj
n → vj

∗ and Iα ∗ (Gj
n(vj

n)) → Iα ∗ χΛj
∗

(vj
∗)p

+ as n → ∞ uniformly on

compact sets of RN . Hence,

‖vj
∗‖L∞(Bρ) + ‖Iα ∗ (χΛj

∗

(vj
∗)p

+)‖L∞(Bρ))

= lim
n→∞

‖vj
n‖L∞(Bρ) + ‖Iα ∗ (G

j
n(vj

n))‖L∞(Bρ))

= lim
n→∞

‖un‖L∞(Bεnρ(aj
n)) + ε−α

n ‖Iα ∗ Gεn
(un)‖L∞(Bεnρ(aj

n)) > 0.

Therefore, vj
∗ 6= 0 and the set Λj

∗ cannot be empty. By lemma 3.5, it can neither be a half-space.
Hence, we conclude that Λj

∗ = RN and aj
∗ ∈ Λ̄, that the function vj

∗ satisfies the equation

−∆vj
∗ + V (aj

∗)vj
∗ =

(

Iα ∗ (vj
∗)p

+

)

(vj
∗)p−1

+ in R
N ,

and that, since vj
∗ ≥ 0,

(3.10) lim inf
n→∞

1

2εN
n

∫

BεnR(aj
n)

(

ε2
n|∇un|2 + V |un|2 − p

εα
n

(

Iα ∗ Gεn
(un)

)

Gεn
(un)

)

≥ 1

2

∫

BR

|∇vj
∗|2 + V (aj

∗)|vj
∗|2 − 1

2p

∫

BR

(

Iα ∗ (vj
∗)p

+

)

(vj
∗)p

+

=
1

2

∫

BR

|∇vj
∗|2 + V (aj

∗)|vj
∗|2 − 1

2p

∫

BR

(

Iα ∗ |vj
∗|p

)

|vj
∗|p

≥ C(aj
∗) − 1

2

∫

RN \BR

|∇vj
∗|2 + V (aj

∗)|vj
∗|2.

In order to study the integral outside BεnR(aj
n), we choose η ∈ C∞(RN ) such that 0 ≤ η ≤ 1,

η = 0 on B1 and η = 1 on RN \ B2, and we define for n ∈ N and R > 0 the function ψn,R ∈
C∞(RN ) for x ∈ RN by

ψn,R(x) =
k

∏

j=1

η
(x− aj

n

εnR

)

.

Since un is a solution to the penalized problem (Qεn
), we have by taking ψn,Run as a test function

in the penalized problem (Qεn
),

∫

RN \∪k
j=1

BεnR(aj
n)

ε2
nψn,R|∇un|2 + V ψn,R|un|2

=
p

εα
n

∫

RN \∪k
j=1

BεnR(aj
n)

(

Iα ∗ Gεn
(un)

)

gεn
(un)unψn,R −

∫

RN \∪k
j=1

BεnR(aj
n)

ε2
nun(∇ψn,R|∇un).

Hence, in view of the superlinearity assumption (g3) on the penalized nonlinearity

∫

RN \∪k
j=1

BεnR(aj
n)

1

2

(

ε2
n|∇un|2 + V |un|2

)

− p

2εα
n

(

Iα ∗ Gεn
(un)

)

Gεn
(un)

≥ 1

2

∫

RN \∪k
j=1

BεnR(aj
n)

ε2
nψn,R|∇un|2 + V ψn,R|un|2 − p

εα
n

(

Iα ∗ Gεn
(un)

)

gεn
(un)un

= −1

2

∫

RN \∪k
j=1

BεnR(aj
n)

ε2
n(un∇ψn,R|∇un) +

p

εα
n

(

Iα ∗ Gεn
(un)

)

gεn
(un)un(1 − ψn,R).

By scaling, if n is large enough so that BεnR(aj
n) ∩BεnR(aℓ

n) = ∅,

1

εN
n

∫

RN \∪k
j=1

BεnR(aj
n)

1

2

(

ε2
n|∇un|2 + V |un|2

)

− p

2εα
n

(

Iα ∗ Gεn
(un)

)

Gεn
(un)

≥ −1

2

k
∑

j=1

∫

B2R\BR

vj
n(∇ηR|∇vj

n) +
(

Iα ∗ G
j
n(vj

n)
)

g
j
n(vj

n)vj
n,
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where ηR ∈ C∞(RN ) is defined for R > 0 and y ∈ RN by ηR(y) = η(y/R). Therefore, since

vj
n ⇀ vj

∗ in H1(BR) as n → ∞, vj
n → vj

∗ in L2(BR) as n → ∞, and by the convergence (3.9)
(

Iα ∗ Gj
n(vj

n)
)

g j
n(vj

n)vj
n →

(

Iα ∗ (vj
∗)p

+

)

(vj
∗)p

+ in L1(BR),

and therefore

(3.11) lim inf
n→∞

1

εN
n

∫

RN \∪k
j=1

BεnR(aj
n)

1

2

(

ε2
n|∇un|2 + V |un|2

)

− p

2εα
n

(

Iα ∗ Gεn
(un)

)

Gεn
(un)

≥ −1

2

k
∑

j=1

∫

B2R\BR

(vj
∗(y)∇ηR|∇vj

∗) +
(

Iα ∗ (vj
∗)p

+

)

(vj
∗)p

+

In order to conclude, we combine (3.10) and (3.11), to obtain

lim inf
n→∞

Jε(un)

εN
n

≥
k

∑

j=1

C(aj
∗) − 1

2

k
∑

j=1

(
∫

B2R\BR

(vj
∗∇ηR|∇vj

∗) +
(

Iα ∗ (vj
∗)p

+

)

(vj
∗)p

+

+

∫

RN \BR

|∇vj
∗|2 + V (aj

∗)|vj
∗|2

)

and we observe that the right-hand side goes to 0 asR → ∞ by Lebesgue’s dominated convergence
theorem since vj

∗ ∈ H1(RN ) and (Iα ∗(vj
∗)p

+)(vj
∗)p

+ is integrable by the Hardy–Littlewood–Sobolev
inequality (proposition 2.2). �

3.4. Asymptotic behavior of solutions. Here and in the sequel, we choose a bounded open
set U ⊂ RN such that infU V > 0 and Λ̄ ⊂ U . The following statement summarizes concentration
estimates we have obtained so far.

Proposition 3.6. Let ρ > 0. There exists a family of points (aε)ε>0 in Λ such that

lim inf
ε→0

‖uε‖L∞(Bερ(aε)) > 0,

lim
ε→0

V (aε) = inf
Λ
V,

lim
ε→0

dist(aε,R
N \ Λ) > 0,

lim
R→∞
ε→0

‖uε‖L∞(U\BεR(aε)) +
1

εα
‖Iα ∗ Gε(uε)‖L∞(U\BεR(aε)) = 0.

Proof. We begin by showing that the solutions do not converge uniformly to 0 in Λ. By testing
the equation against uε, and applying the growth assumption (g2) and the Young inequality, we
estimate for every λ > 0

∫

RN

(

ε2|∇uε|2 + V |uε|2
)

=
p

εα

∫

RN

(

Iα ∗ Gε(uε)
)

gε(uε)uε

≤
(

1 + λ
) p

εα

∫

RN

∣

∣Iα
2

∗ (Hε(uε)+)
∣

∣

2
+

(

1 +
1

λ

) 1

εα

∫

RN

∣

∣Iα
2

∗ (χΛ(uε)p
+)

∣

∣

2
.

In view of the weighted Hardy–Littlewood–Sobolev inequality (proposition 2.3) and of our hy-
pothesis (H2), we have

(3.12)
p

εα

∫

RN

∣

∣Iα
2

∗(Hε(uε)+)
∣

∣

2 ≤ Cαp

εα

∫

RN

|uε|2Hε(x)2|x|α dx ≤ Cαpκ

∫

RN

(

ε2|∇uε|2 +V |uε|2
)

On the other hand, by the Hardy–Littlewood–Sobolev inequality of proposition 2.2 and by the
rescaled Sobolev inequality of proposition 2.1,

1

εα

∫

RN

∣

∣Iα
2

∗ (χΛ(uε)p
+)

∣

∣

2 ≤ C

εα

(

∫

Λ

|uε| 2Np

N+α

)1+ α
N

≤ C

εα
‖uε‖2p−2

L∞(Λ)

(

∫

Λ

|uε| 2N
N+α

)1+ α
N

≤ C′‖uε‖2p−2
L∞(Λ)

∫

RN

ε2|∇uε|2 + V |uε|2.

(3.13)



18 VITALY MOROZ AND JEAN VAN SCHAFTINGEN

Since uε 6= 0, we deduce from (3.12) and (3.13) that

(

1 − Cαpκ(1 + λ)
)

≤ C′
(

1 +
1

λ

)

‖uε‖2p−2
L∞ .

Since Cαpκ < 1 by (H2), this gives the first conclusion if λ > 0 is taken small enough. There
exists thus a family of points (aε)ε>0 in Λ such that

lim inf
ε→0

‖uε‖L∞(Bερ(aε)) > 0.

Next, assume that the sequence of points (aεn
)n∈N in U converges to a∗ ∈ Λ̄ and limn→∞ εn =

0. By the lower bound on the energy of proposition 3.3,

lim inf
n→∞

1

εN
n

Jεn
(uεn

) ≥ C(a∗) = lim
n→∞

C(an).

In view of the upper bound of the energy of lemma 3.2, this implies that

lim
n→∞

C(an) = inf
Λ

C.

Since the set Ū is compact, this proves that limε→0 C(aε) = infΛ C. By the definition in (3.3)
of the concentration function C and by proposition 3.1, this implies that limε→0 V (aε) = infΛ V ,
and thus, as infΛ V < inf∂Λ V , that limε→0 dist(aε,R

N \ Λ) > 0.
Finally, we assume by contradiction that

lim sup
R→∞
ε→0

‖uε‖L∞(U\BεR(aε)) + ε−α‖Iα ∗ Gε(uε)‖L∞(U\BεR(aε)) > 0,

Then, there exists a sequence of positive numbers (εn)n∈N converging to 0 and a sequence of
points (xn)n∈N in U such that

lim inf
ε→0

‖uεn
‖L∞(Bεnρ(xn)) + ε−α

n ‖Iα ∗ Gεn
(uεn

)‖L∞(Bεnρ(xn)) > 0

and

lim
n→∞

|xn − aεn
|

εn
= ∞.

Since Ū is compact, we can assume that the sequence (xn)n∈N converges to x∗ and that (aεn
)n∈N

converges to a∗. By the lower bound on the energy of proposition 3.3, x∗ ∈ Λ̄, a∗ ∈ Λ̄, and

lim inf
n→∞

1

εN
n

Jεn
(uεn

) ≥ C(a∗) + C(x∗) ≥ 2 inf
Λ

C.

On the other hand, the upper bound lemma 3.2 shows that

lim inf
n→∞

1

εN
n

Jεn
(uεn

) ≤ inf
Λ

C.

This brings a contradiction since infΛ C > 0 in view of the definition of C, proposition 3.1 and
the assumption infΛ V > 0. �

4. Back to the original problem

4.1. Linear equation outside small balls. In order to prove that solutions of the penalized
problem (Qε) solve the original Choquard equation (Pε), we must show that these solutions
are small enough in the penalized region R

N \ Λ. We begin by showing that if p ≥ 2 then
solutions uε of penalized problem (Qε) are also subsolutions of a nonlocal linear problem outside
small balls centered on a family of points (aε)ε>0 at which uε does not vanish, as constructed in
proposition 3.6.

Proposition 4.1 (Linear equation outside small balls). Let p ∈
[

2, N+α
(N−2)+

)

. For ε > 0 small

enough and δ ∈ (0, 1), there exists R > 0, aε ∈ Λ and ν > 0 such that
{

−ε2∆uε + (1 − δ)V uε ≤
(

pε−αIα ∗ (Hεuε) + νεN−αIα

)

Hε in R
N \B(aε, Rε),

uε ≤ 1 in Λ \B(aε, Rε),

where the constant ν only depends on V , Λ, U , p and κ.
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Proof. Using the assumption (2.2) and since p ≥ 2, by proposition 3.6 there exist R > 0 and a

family of points (aε)ε>0 in Λ such that p
(

ε−αIα ∗ Gε(uε)
)

(uε)p−2
+ ≤ δ in U \ B(aε, Rε) and the

nonlinear term is bounded as

pε−α
(

Iα ∗ Gε(uε)
)

gε(uε) ≤ p
(

ε−αIα ∗ Gε(uε)
)

(uε)p−1
+ ≤ δV uε in U \B(aε, Rε).

In view of the assumption (g2) in R
N \ U , the nonlinear term is bounded there as

p
(

ε−αIα ∗ Gε(uε)
)

gε(uε) ≤ p
(

ε−αIα ∗
(

Hεuε + 1
pχΛ(uε)p

))

Hε in R
N \ U .

By the scaled Sobolev inequality proposition 2.1 and by the upper bound on the norm of solutions
(3.4) in RN \ U it holds

1

εα
Iα ∗

(

χΛ(uε)p
+

)

≤ C
Iα

εα

∫

Λ

(uε)p
+ ≤ C′Iαε

N(1− p

2 )
(

∫

RN

ε2|∇uε|2 + V (uε)2
)

p
2 ≤ νIαε

N−α,

where ν > 0 only depends on the potential V , the sets Λ and U , the exponent p and the penal-
ization parameter κ. We conclude by inserting the previous pointwise bounds in the penalized
equation (Qε). �

4.2. Comparison principle. A second tool is a comparison principle for nonlocal problems in
subdomains of RN .

Proposition 4.2 (Comparison principle). Let Ω ⊆ RN be a nonempty open set and H is non-

negative and that (H2) holds. If u ∈ H1
loc(Ω) ∩ L2(Ω, Hε(x)2|x|α dx) satisfies weakly

−ε2∆u+ V u ≤ p

εα
(Iα ∗Hεu)Hε in Ω,

that is, if ϕ ∈ H1(Ω) is compactly supported in Ω and ϕ ≥ 0,
∫

Ω

ε2(∇u|∇ϕ) + V uϕ ≤ p

εα

∫

Ω

∫

Ω

Iα(x− y)Hε(y)u(y)Hε(x)ϕ(x) dy dx

and u+ ∈ H1
V,0(Ω), then u ≤ 0 in Ω.

The assumption u ∈ L2(Ω, Hε(x)2|x|α dx) ensures that by the weighted Hardy–Littlewood–
Sobolev inequality (proposition 2.3) Iα ∗ Hεu ∈ L2(Ω, |x|−α dx). By (H2), if ϕ ∈ H1(Ω) is
compactly supported in Ω, then Hεϕ ∈ L2(Ω, |x|α dx).

Proof. By definition of the space H1
V,0(Ω), there exists a sequence (ϕn)n∈N in C∞

c (Ω) such that

limn→∞‖ϕn − u+‖ → 0. If we set un := min{(ϕn)+, u+}, then un ∈ H1
V,0(Ω) and by Lebesgue’s

dominated convergence theorem,

lim
n→∞

∫

RN

ε2|∇un − ∇u+|2 + V |un − u+|2 = 0.

In addition, un is nonnegative and compactly supported in Ω and u−un = 0. Testing the inequa-
tion against un we obtain, by the Cauchy-Schwarz inequality, the weighted Hardy–Littlewood–
Sobolev inequality (proposition 2.3) and the assumption (H2),

0 ≥
∫

Ω

(

ε2(∇u|∇un) + V uun

)

− p

εα

∫

Ω

(Iα ∗Hεu)Hεun,

≥
∫

Ω

(

ε2(∇u+|∇un) + V u+un

)

− p

εα

∫

Ω

(Iα ∗Hεu+)Hεun

≥
∫

Ω

(

ε2(∇u+|∇un) + V u+un

)

− Cαpκ
(

∫

Ω

ε2|∇un|2 + V |un|2
)

1
2
(

∫

Ω

ε2|∇u+|2 + V |u+|2
)

1
2

.

By letting n → ∞, we conclude that

0 ≥ (1 − Cακ)

∫

Ω

|∇u+|2 + V |u+|2,

so that, since Cακ < 1, u+ = 0 and thus u ≤ 0. �
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4.3. Construction of penalization from supersolutions. We now construct supersolutions
to a modification of nonlocal equation (Pε). These supersolutions will be used to construct
explicitly penalizations Hε and to employ proposition 4.1 in order to show that solutions of
penalized problem (Qε) solve the original problem (Pε) for sufficiently small ε > 0.

Proposition 4.3 (Construction of penalization from supersolutions). Let N ∈ N, α ∈ (0, N),
p ≥ 2 and V ∈ C(RN ; [0,∞)). If p = 2 and α ≥ N − 2, assume additionally that infRN V > 0
and that

lim inf
|x|→∞

V (x)|x|N−α > 0.

If 2 < p ≤ 1 + max(α, 1 + α
2 )/(N − 2)+ and α > N − 2, assume additionally that

lim inf
|x|→∞

V (x)|x|2 > 0.

Let ν > 0, λ > 0 and δ ∈ (0, 1). For all sufficiently small ε > 0, there exists ūε ∈ H1
V (RN ),

ūε > 0 such that
{

−ε2∆ūε + (1 − δ)V ūε ≥
(

pε−αIα ∗
(

χRN \Λū
p
ε

)

+ νεN−αIα

)

χRN \Λū
p−1
ε in R

N ,

ūε = e− λ
ε on Λ̄.

Moreover, Hε = χRN \Λū
p−1
ε defines a penalization which converges uniformly to 0 as ε → 0 and

satisfies (H1), (H2).

Proof. We consider separately three different cases.

Case 1. N ≥ 3 and p > 1 + max(α, α+2
2 )/(N − 2).

For µ > 0 we take wµ ∈ C2(RN ,R) such that wµ = 1 on Λ̄, wµ > 0 on Ū \ Λ and for every

x ∈ R
N \ Ū ,

(4.1) wµ(x) =
1

|x|µ .

We also take µ ∈ (0, N − 2) and, for sufficiently small ε > 0, we compute

(4.2) − ε2∆wµ(x) + (1 − δ)V wµ(x) ≥ ε2χRN \Λ(x)
µ(N − 2 − µ)

|x|2 wµ(x) for x ∈ R
N .

Moreover, if µp > α, there exists a constant C > 0, such that for every x ∈ RN

(Iα ∗ wp
µ)(x)wµ(x)p−2 ≤



































C

|x|µ(2p−2)−α
if µp < N,

C log(|x| + e)

|x|µ(p−2)+N−α
if µp = N,

C

|x|µ(p−2)+N−α
if µp > N.

We deduce therefrom that under the assumption p > 1 + max(α, α+2
2 )/(N − 2), we can choose

µ ∈ (0, N − 2) in such a way that for every x ∈ RN \ Λ,

(Iα ∗ wp
µ)(x)wµ(x)p−2 ≤ C′

|x|2 and Iα(x)wµ(x)p−2 ≤ C′

|x|2 .(4.3)

We define ūε = e− λ
ε wµ. Then for ε > 0 small enough and x ∈ R

N \ Λ, in view of (4.3) we have

pε−α
(

Iα ∗ (χRN \Λū
p
ε)

)

(x)ūε(x)p−2 ≤ C′ pε
−αe−(2p−2) λ

ε

|x|2 ≤ 1

2

ε2

|x|2 .

and

νεN−αIα(x)ūε(x)p−2 ≤ χRN \Λ(x)C′ νε
N−αe−(p−2) λ

ε

|x|2 ≤ 1

2

ε2

|x|2 .

When p = 2, this is possible since 2 < N − α by our assumption. Therefore ūε defines the
required supersolution.
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Next we verify the properties of the penalization Hε = χRN \Λū
p−1
ε . Since µ ∈ (0, N − 2) and

(4.3), we can choose µ in such a way that

(4.4) 2µ(p− 1) − α > 2 max(α,
α+ 2

2
) − α > 2

is satisfied. Then x 7→ Hε(x)2|x|α ∈ Lq(RN ) ∩ L∞(RN ), for some q < N
2 . and the homoge-

neous Sobolev space H1
0 (RN )(RN ) is compactly embedded into the space L2(RN , (Hε(x)2|x|α +

χΛ(x)) dx) [13, theorem 5(ii)]. Since H1
V (RN ) is continuously embedded into H1

0 (RN )(RN ), the
assumption (H1) follows.

Further, (4.4) implies that for all x ∈ RN ,

Hε(x)2|x|α ≤ e−
2(p−1)λ

ε
c

|x|2 .

For every κ > 0, by the classical Hardy inequality in RN with N ≥ 3, we find ε0 > 0 such that
for all ε ∈ (0, ε0] and for all ϕ ∈ C∞

c (RN ) it holds

1

εα

∫

RN

|Hε(x)ϕ(x)|2 |x|α dx ≤ ce−
2(p−1)λ

ε

εα

∫

RN

|ϕ(x)|2
|x|2 dx ≤ ε2κ

∫

RN

|∇ϕ|2,

which implies (H2).

Case 2. p = 2, α ≥ N − 2 and infx∈RN V (x)(1 + |x|N−α) > 0.

Take wµ as defined in (4.1) with µ > N
2 . In view of (4.2), since infx∈RN V (x)(1 + |x|N−α) > 0

and α ≥ N − 2, for a fixed δ ∈ (0, 1) and all sufficiently small ε > 0,

−ε2∆wµ + (1 − δ)V wµ ≥ 1−δ
2 V wµ in R

N .

Moreover, there exists C > 0 such that for every x ∈ RN ,
(

Iα ∗ wp
µ

)

(x) ≤ CIα(x).

We define again ūε = e− λ
ε wµ. Since infx∈RN \Λ V (x)|x|N−α > 0, when ε > 0 is small enough, we

can estimate on RN \ Λ,

pε−α
(

Iα ∗ (χRN \Λū
2
ε)

)

≤ pε−αe−2 λ
ε

(

Iα ∗ (wp
µ)

)

wp−2
µ ≤ Cε−αe−2 λ

ε Iα ≤ 1−δ
4 V

and

νεN−αIαū
p−2
ε ≤ CεN−αIα ≤ 1−δ

4 V.

This implies that ūε is the required supersolution.
Next we verify the properties of the penalization Hε = χRN \Λū

p−1
ε . For all x ∈ RN ,

Hε(x)2|x|α ≤ ce− 2λ
ε

(1 + |x|)2µ−α
.

In particular, since µ > N
2 ,

lim
|x|→∞

Hε(x)2|x|α
V (x)

= 0,

and the compactness of the embedding H1
V (RN ) ⊂ L2(RN , (Hε(x)2|x|α +χΛ(x)) dx) follows from

[13, theorem 4(ii)] when N ≥ 3, or [13, p.287] for N = 1, 2. This settles (H1).
Let κ > 0. Since α ≥ N − 2 and infRN V (x)(1 + |x|N−α) > 0, we find ε0 > 0 such that for all

ε ∈ (0, ε0] and for all ϕ ∈ C∞
c (RN ) it holds

1

εα

∫

RN

|Hε(x)ϕ(x)|2|x|α dx ≤ ce− 2λ
ε

εα

∫

RN

|ϕ(x)|2
(1 + |x|)N−α

dx ≤ κ

∫

RN

V |ϕ|2,

which implies (H2).

Case 3. p > 2 and lim inf |x|→∞ V (x)|x|2 > 0.
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Choose R > 0 such that infx∈RN \BR
V (x)|x|2 > 0 and Ū ⊂ BR. For µ > 0 choose wµ ∈

C2(RN ) such that wµ > 0, wµ = 1 on Λ, wµ(x) = 2R2 − |x|2 on BR \ U and wµ(x) = |x|−µ on
R

N \B2R. For ε > 0 small enough, we have

−ε2∆wµ + (1 − δ)V wµ ≥ ε2χBR\U
N
R2wµ + 1−δ

2 V wµ in R
N .

If µp > N then there exists C > 0 such that on RN

Iα ∗ wp
µ ≤ CIα.

We define ūε = e− λ
ε wµ. and we observe that if we choose µ(p − 2) + N − α > 2 then in RN \ Λ

we can estimate for sufficiently small ε > 0,

pε−α
(

Iα ∗ (χRN \Λū
p
ε)

)

ūp−2
ε ≤ pε−αe−(2p−2) λ

ε

(

Iα ∗ (wp
µ)

)

wp−2
µ

≤ Cε−αe−(2p−2) λ
ε Iαw

p−2
µ

≤ 1

2

(

ε2χBR\U
N
R2 + (1 − δ)V

)

.

and

νεN−αIαū
p−2
ε ≤ CεN−αe−(p−2) λ

ε Iαw
p−2
µ ≤ 1

2

(

ε2χBR\U
N
R2 + (1 − δ)V

)

.

The function ūε defines the required supersolution.
Define the penalization Hε = χRN \Λū

p−1
ε . Note that µ in the definition of wµ was chosen so

that µp > N and µ(p− 2) +N − α > 2. These two assumptions imply that

2µ(p− 1) − α > 2.

The latter ensures that

(4.5) lim
|x|→∞

Hε(x)2|x|α
V (x)

= 0.

Let R > 0 be such that infx∈RN \BR
V (x)|x|2 > 0 and Ū ⊂ BR. Set V̄ (x) = V (x) + χBR

(x),

so that V̄ (x) > 0 for all x ∈ RN . Then the compactness of the embedding H1
V̄

(RN ) ⊂
L2(RN , (Hε(x)2|x|α +χΛ(x)) dx) follows from (4.5), see [13, theorem 4(ii)] if N ≥ 3, or [13, p.287]
for N = 1, 2. Using proposition 2.1 with q = 2 and Λ = BR, we conclude that H1

V (RN ) is con-
tinuously embedded into H1

V̄
(RN ) and the assumption (H1) follows.

Let κ > 0. Using (4.5) we find ε0 > 0 such that for all ε ∈ (0, ε0] and for all ϕ ∈ C∞
c (RN ) it

holds

1

εα

∫

RN

|Hε(x)ϕ(x)|2 |x|α dx ≤ ce−
2(p−1)λ

ε

εα

∫

RN

|ϕ(x)|2
(1 + |x|)2

dx ≤ κ

2

∫

RN

V̄ |ϕ|2.

Using again proposition 2.1 with q = 2 and Λ = BR, we obtain

κ

2

∫

RN

V̄ ϕ2 dx ≤ κ
(

∫

RN

ε2|∇ϕ|2 + V ϕ2
)

,

which concludes the proof of (H2). �

4.4. Proof of the existence theorems. We are going to show that the family of supersolutions
ūε constructed in the previous section could be extended to a family of supersolutions in RN \
B(aε, Rε) which are separated away from zero on aε and controlled outside Λ by the penalizations
Hε. These properties are sufficient in order to use them as the barriers for the family of solutions
uε of the penalized equation (Qε)

Proposition 4.4 (Construction of barrier functions). In addition to all the assumptions of

proposition 4.3, let R > 0 and (aε)ε>0 be a family of points in Λ such that lim infε→0 d(aε, ∂Λ) >
0. Then for all sufficiently small ε > 0, there exists Ūε ∈ H1

V (RN ) ∩C1,1(RN ), Ūε > 0 such that
{

−ε2∆Ūε + (1 − δ)V Ūε ≥
(

pε−αIα ∗ (HεŪε) + νεN−αIα

)

Hε in R
N \B(aε, Rε),

Ūε ≥ 1 on B(aε, Rε).

Moreover, Ūp−1
ε < Hε in RN \ Λ.
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Proof. We choose m > 0 so that

m2 < (1 − δ) inf
Λ
V,

r > 0 such that

r <
1

2
lim inf

ε→0
d(aε, ∂Λ).

Let ūε be a family of supersolutions of given by proposition 4.3 for some λ < mr. We define

hε(y) =

{

cosh m(r−|y|)
ε if x ∈ B(aε, r),

1 if x ∈ RN \B(aε, r).

Then hε ∈ C1,1(RN ) and

(4.6) − ε2∆hε +m2χBr
hε ≥ 0 in R

N .

Let ūε be the supersolution, constructed in Proposition 4.3. Define

Ūε(x) = 2
ūε(x)hε(x− aε)

e− λ
ε cosh mr

ε

.

For small ε > 0 we have Ūε(x) ≥ 1 in B(aε, Rε) and B(aε, 2r) ⊂ Λ, so using the construction of
ūε and (4.6) we obtain

−ε2∆Ūε + (1 − δ)V Ūε ≥
(

pε−αIα ∗ (HεŪε) + νεN−αIα

)

Hε in R
N \B(aε, Rε).

Clearly, Ūp−1
ε ≤ Hε = ūp−1

ε in RN \ Λ for all sufficiently small ε > 0. �

Proof of theorems 1 and 6. Propositions 4.1 and 4.4 imply via comparison principle of proposi-
tion 4.2, that for all sufficiently small ε > 0 solutions uε of the penalized equation (Qε) satisfy

uε ≤ Ūε in R
N \B(aε, Rε).

Since Ūp−1
ε ≤ Hε in RN \ Λ, we conclude that uε is a solution of the original problem (Pε). �

5. Nonexistence of concentrating solutions

5.1. Critical potential well at a point. In this section we show that for p = 2, if α > N − 2
and if the potential V vanishes at some point a∗ ∈ RN strongly enough, then the problem (Pε)
cannot have a family of solutions that concentrates somewhere in RN \ {a∗}. Indeed, we would
expect a family of solutions that concentrates on some compact set K ⊂ RN to satisfy

lim inf
ε→0

1

εN

∫

K

|uε|2 > 0,

while we obtain a contradicting asymptotic estimate.

Proposition 5.1. Let N ∈ N, α ∈ (0, N), p = 2, V ∈ C(RN ; [0,∞)). Assume that α > N − 2
and, as ρ → 0,

1

ρN

∫

Bρ(a)

V (x) = o(ρ
4

α+2−N
−2).

If (uε)ε∈(0,ε0) is a family in ⊂ H1
loc(R

N ) ∩ L2((1 + |x|)−(N−α) dx) of positive solutions to (Pε),

then for every compact set K ⊂ RN \ {a∗}, as ε → 0,
∫

K

|uε|2 = o(εN ).

The assumptions of this proposition are satisfied in particular if α ≥ N − 2
3 and V ∈ C1(RN )

vanishes at a∗, or if α > N − 1 and V ∈ C2(RN ) vanishes at a∗.

Proof of proposition 5.1. We first apply a ground-state transformation to (Pε), that is, given ϕ ∈
C∞

c (RN ), we test the equation (Pε) against the compactly supported function ϕ2/uε ∈ H1(RN )
to obtain the inequality [2, theorems 3.1 and 3.3] (see also [42, proposition 3.1])

∫

RN

ε2|∇ϕ|2 + V |ϕ|2 ≥ ε−α

∫

RN

(

Iα ∗ |uε|2
)

ϕ2.
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We choose now the function ψ ∈ C∞
c (RN ) \ {0} such that suppϕ ⊂ B1. We apply the previous

inequality to the function ϕρ : RN → R defined for ρ > 0 and x ∈ RN by

ϕρ(x) = ψ
(x− a∗

ρ

)

,

and we deduce if B2ρ(a∗) ∩K = ∅ that for every ε > 0,

1

εN

∫

K

|uε|2 ≤ C
ε2+α−N

ρ2
+

1

εN−α
o(ρ

4
α+2−N

−2),

as ρ → 0 uniformly in ε > 0. Given η > 0, we take ρ = ε
α+2−N

2 /η
1
2 in the previous inequality

and we obtain the asymptotic estimate

1

εN

∫

K

|uε|2 ≤ Cη + o(η
2

α+2−N
−1),

as (ε, η) → (0, 0). Since α < N , 2
α+2−N − 1 > 0 and the conclusion follows. �

In the limiting case α = N − 2, the same techniques limits the mass available in K.

Proposition 5.2. Let N ∈ N, α = N − 2, p = 2. There exists a constant C > 0 such that for

every V ∈ C(RN ; [0,∞)) such that V = 0 on Ba∗
(ρ) for some a∗ ∈ RN and ρ > 0, for every

positive solution uε ∈ H1
loc(R

N ) ∩L2((1 + |x|)−2 dx) of (Pε) and for every compact set K ⊂ RN ,

one has
1

εN

∫

K

|uε|2 ≤ C dist(Bρ(a),K)2

ρ2
.

Proof. As in the proof of proposition 5.1, we obtain by a ground-state transformation applied to
(Pε) for every ϕ ∈ C∞

c (RN ) the inequality
∫

RN

ε2|∇ϕ|2 + V |ϕ|2 ≥ ε−(N−2)

∫

RN

(

Iα ∗ |uε|2
)

ϕ2,

We apply the previous inequality to the function ϕρ : RN → R defined for ρ > 0 and x ∈ R
N by

ϕρ(x) = ψ
(x− a∗

ρ

)

,

where ψ ∈ C∞
c (RN ) \ {0} is a fixed function, and we conclude that

1

εN

∫

K

|uε|2 ≤ C dist(Bρ(a),K)2

ρ2
. �

5.2. Critical potential well at infinity. Finally, we prove that for p = 2 and α = N−2, if the
potential V decays at infinity faster then the inverse square, then (Pε) cannot have concentrating
solutions. In this case, the nonlocal term forces the rescaled mass to vanish on every compact
subset K ⊂ RN .

Proposition 5.3. Let N ≥ 3, p = 2, V ∈ C(RN ; [0,∞)). Assume that α = N − 2 and

lim
R→∞

1

RN−2

∫

B2R\BR

V = 0.

If uε ∈ H1
loc(R

N ) ∩ L2((1 + |x|)−2 dx) is a solution to (Pε), then

1

εN

∫

RN

|uε|2 ≤ Γ(N−2
2 )πN/22N−2

(N − 2

2

)2

.

Proof. As in the proof of proposition 5.1, by a ground-state transformation, we have for every
ϕ ∈ C∞

c (RN ) the inequality
∫

RN

ε2|∇ϕ|2 + V |ϕ|2 ≥ ε−α

∫

RN

(

Iα ∗ |uε|2
)

ϕ2.

For every ϕ ∈ C∞
c (RN \ {0}) \ {0}, we apply the previous inequality to ϕR defined for R > 0

and x ∈ RN by

ϕR(x) = ϕ
( x

R

)

.
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We observe that by change of variable and our assumption on V ,

lim
R→∞

1

RN−2

∫

RN

ε2|∇ϕR|2 + V |ϕR|2 =

∫

RN

ε2|∇ϕ|2.

On the other hand, by a change of variable,

1

RN−2

∫

RN

(

IN−2 ∗ |uε|2
)

ϕ2
R =

∫

RN

1

R2

(

IN−2 ∗ |uε|2
)

(Rz)|ϕ(z)|2 dz.

We take into account the homogeneity of degree −2 of the Riesz potential IN−2 to rewrite the
convolution and we apply Fatou’s lemma to conclude that for every z ∈ RN \ {0},

lim inf
R→∞

1

R2

(

IN−2 ∗ |uε|2
)

(Rz) = lim inf
R→∞

∫

RN

IN−2(z − w/R)|uε(w)|2 dz ≥ IN−2(z)

∫

RN

|uε|2.

We obtain thus, by Fatou’s lemma again by letting R → ∞,
∫

RN

|uε|2
∫

RN

IN−2|ϕ|2 ≤ εN

∫

RN

|∇ϕ|2.

The conclusion follows by using the optimal constant in the Hardy inequality (see e.g. [56,
theorem 6.4.10 and exercise 6.8]). �

It is not clear whether this condition effectively obstructs the construction of concentrating
solutions. Indeed, if vλ is a solution of (Rλ) such that Iλ(vλ) = E(λ), then by proposition 5.3
and the Pohožaev identity for (Rλ) [42, Proposition 3.2],

∫

RN

|vλ|2 =
2

λ
E(λ) = 2E(1).

Further advancement on the problem would require to estimate sharply enough E(1).

6. Concluding remarks

Here we list several questions related to the existence of concentrating solutions for the
Choquard equation (Pε) which are left open in this work.

6.1. Concentrating solutions in the locally sublinear case p < 2. The functional associ-
ated to the Choquard equation (Pε) is a superquadratic perturbation of a local quadratic form
for every p > 1. The limiting equation (P∗) is variationally well–posed for p ∈

(

N+α
N , N+α

(N−2)+

)

,

see for example [41]. Although we prove the existence of solutions of the penalized problem for
p ∈

(

1, N+α
(N−2)+

)

(see proposition 2.5), our penalization methods covers only the locally superlin-

ear range p ≥ 2. In fact the only essential step in our considerations which requires p ≥ 2 is the
construction of the linear equation outside small balls (proposition 4.1).

The existence of families of concentrating positive solutions for (Pε) in the locally sublinear
range p ∈

(

N+α
N , 2

)

remains open and seems to be a delicate problem.

6.2. Concentration in the presence of weak critical potential wells. When p = 2, α >
N − 2 and V vanishes at some points in RN \ Λ at a rate weaker then the strong critical
potential well assumption (1.2) of theorem 4, the existence of families of positive solutions for
(Pε) which concentrate in Λ remains open. In this case it might be possible to construct solutions
concentrating in Λ by gluing the solutions of a suitably penalized nonlocal problem with the first
Neumann eigenfunction of

−ε2∆u(x) + c|x− a∗| 4
α+2−N

−2u(x) = ε−αu(x) in Bερ(a∗).

Similar approach should be possible if α = N − 2 and lim infx→a V (x)/|x|γ > 0 for some γ > 0.
A more difficult problem is to tackle the case when α = N − 2 and V is allowed to take any

nonnegative value outside Λ, even to vanish on some open set.

6.3. Concentration around critical potential wells. The existence of families of positive
solutions for the Choquard equation (Pε) which concentrate around critical potential wells of V
remains open. Relevant results obtained in the case of the local nonlinear Schrödinger equations
[14, 15] suggest that the form of the limiting equation should strongly depend on the rate at
which the potential V vanishes at the point.
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6.4. Multipeak solutions and concentration around critical point or critical mani-

folds. In the case N = 3, α = 2, p = 2, families of solutions for the Choquard equation
which concentrate to nondegenerate critical points of V have been constructed in [50, 54] via
a Lyapunov–Schmidt type reduction techniques. In addition, [54] establishes the existence of
multi–peak solutions. The penalization method developed in this work should be applicable for
the study of families of concentrating and multipeak solutions for (Pε) located around local
maxima or critical points of V ; as well as around model critical manifolds, such as curves and
lower–dimensional spheres. In the local context of equation (1.1) related results were obtained
within the relevant penalization framework in [10, 23] (see also [5, 6, 18, 21, 22]).

6.5. Concentrating solutions via the Lyapunov–Schmidt reduction. Families of concen-
trating solutions for the Choquard equation have been constructed via a Lyapunov–Schmidt type

reduction only in the case N = 2, α = 2, p = 2 and under some restrictions on the decay of the
potential V , see [50,54]. It is an interesting question wh ether the Lyapunov–Schmidt reduction
techniques could be extended to the framework of the present work, that is, to a natural range
of exponents p and to the classes of potentials V with optimal decay assumptions at infinity.
The difficulty in applying small perturbation techniques is largely due to the fact that in the
case of fast decaying or compactly supported potentials the original Choquard equation (Pε) and
the limit equation (P∗) are well–posed in different functional spaces, which limits applicability
of standard small perturbation methods. In the context of local equation (1.1) an Lyapunov–
Schmidt type reduction approach which allows to handle this issue was recently developed in
[29].
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