22 research outputs found

    Transcriptional landscape of bone marrow-derived very small embryonic-like stem cells during hypoxia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypoxia is a ubiquitous feature of many lung diseases and elicits cell-specific responses. While the effects of hypoxia on stem cells have been examined under <it>in vitro </it>conditions, the consequences of <it>in vivo </it>oxygen deprivation have not been studied.</p> <p>Methods</p> <p>We investigated the effects of <it>in vivo </it>hypoxia on a recently characterized population of pluripotent stem cells known as very small embryonic-like stem cells (VSELs) by whole-genome expression profiling and measuring peripheral blood stem cell chemokine levels.</p> <p>Results</p> <p>We found that exposure to hypoxia in mice mobilized VSELs from the bone marrow to peripheral blood, and induced a distinct genome-wide transcriptional signature. Applying a computationally-intensive methodology, we identified a hypoxia-induced gene interaction network that was functionally enriched in a diverse array of programs including organ-specific development, stress response, and wound repair. Topographic analysis of the network highlighted a number of densely connected hubs that may represent key controllers of stem cell response during hypoxia and, therefore, serve as putative targets for altering the pathophysiologic consequences of hypoxic burden.</p> <p>Conclusions</p> <p>A brief exposure to hypoxia recruits pluripotent stem cells to the peripheral circulation and actives diverse transcriptional programs that are orchestrated by a selective number of key genes.</p

    Local Gene Regulation Details a Recognition Code within the LacI Transcriptional Factor Family

    Get PDF
    The specific binding of regulatory proteins to DNA sequences exhibits no clear patterns of association between amino acids (AAs) and nucleotides (NTs). This complexity of protein-DNA interactions raises the question of whether a simple set of wide-coverage recognition rules can ever be identified. Here, we analyzed this issue using the extensive LacI family of transcriptional factors (TFs). We searched for recognition patterns by introducing a new approach to phylogenetic footprinting, based on the pervasive presence of local regulation in prokaryotic transcriptional networks. We identified a set of specificity correlations –determined by two AAs of the TFs and two NTs in the binding sites– that is conserved throughout a dominant subgroup within the family regardless of the evolutionary distance, and that act as a relatively consistent recognition code. The proposed rules are confirmed with data of previous experimental studies and by events of convergent evolution in the phylogenetic tree. The presence of a code emphasizes the stable structural context of the LacI family, while defining a precise blueprint to reprogram TF specificity with many practical applications.Ministerio de Ciencia e Innovación, Spain (Formación de Profesorado Universitario fellowship)Ministerio de Ciencia e Innovación, Spain (grant BFU2008-03632/BMC)Madrid (Spain : Region) (grant CCG08-CSIC/SAL-3651

    Parasite Burden and CD36-Mediated Sequestration Are Determinants of Acute Lung Injury in an Experimental Malaria Model

    Get PDF
    Although acute lung injury (ALI) is a common complication of severe malaria, little is known about the underlying molecular basis of lung dysfunction. Animal models have provided powerful insights into the pathogenesis of severe malaria syndromes such as cerebral malaria (CM); however, no model of malaria-induced lung injury has been definitively established. This study used bronchoalveolar lavage (BAL), histopathology and gene expression analysis to examine the development of ALI in mice infected with Plasmodium berghei ANKA (PbA). BAL fluid of PbA-infected C57BL/6 mice revealed a significant increase in IgM and total protein prior to the development of CM, indicating disruption of the alveolar–capillary membrane barrier—the physiological hallmark of ALI. In contrast to sepsis-induced ALI, BAL fluid cell counts remained constant with no infiltration of neutrophils. Histopathology showed septal inflammation without cellular transmigration into the alveolar spaces. Microarray analysis of lung tissue from PbA-infected mice identified a significant up-regulation of expressed genes associated with the gene ontology categories of defense and immune response. Severity of malaria-induced ALI varied in a panel of inbred mouse strains, and development of ALI correlated with peripheral parasite burden but not CM susceptibility. Cd36−/− mice, which have decreased parasite lung sequestration, were relatively protected from ALI. In summary, parasite burden and CD36-mediated sequestration in the lung are primary determinants of ALI in experimental murine malaria. Furthermore, differential susceptibility of mouse strains to malaria-induced ALI and CM suggests that distinct genetic determinants may regulate susceptibility to these two important causes of malaria-associated morbidity and mortality

    Evolution of protein domain architectures

    Get PDF
    This chapter reviews current research on how protein domain architectures evolve. We begin by summarizing work on the phylogenetic distribution of proteins, as this will directly impact which domain architectures can be formed in different species. Studies relating domain family size to occurrence have shown that they generally follow power law distributions, both within genomes and larger evolutionary groups. These findings were subsequently extended to multi-domain architectures. Genome evolution models that have been suggested to explain the shape of these distributions are reviewed, as well as evidence for selective pressure to expand certain domain families more than others. Each domain has an intrinsic combinatorial propensity, and the effects of this have been studied using measures of domain versatility or promiscuity. Next, we study the principles of protein domain architecture evolution and how these have been inferred from distributions of extant domain arrangements. Following this, we review inferences of ancestral domain architecture and the conclusions concerning domain architecture evolution mechanisms that can be drawn from these. Finally, we examine whether all known cases of a given domain architecture can be assumed to have a single common origin (monophyly) or have evolved convergently (polyphyly). We end by a discussion of some available tools for computational analysis or exploitation of protein domain architectures and their evolution

    A user's guide to the Encyclopedia of DNA elements (ENCODE)

    Get PDF
    The mission of the Encyclopedia of DNA Elements (ENCODE) Project is to enable the scientific and medical communities to interpret the human genome sequence and apply it to understand human biology and improve health. The ENCODE Consortium is integrating multiple technologies and approaches in a collective effort to discover and define the functional elements encoded in the human genome, including genes, transcripts, and transcriptional regulatory regions, together with their attendant chromatin states and DNA methylation patterns. In the process, standards to ensure high-quality data have been implemented, and novel algorithms have been developed to facilitate analysis. Data and derived results are made available through a freely accessible database. Here we provide an overview of the project and the resources it is generating and illustrate the application of ENCODE data to interpret the human genome

    Brain Serotonin Transporter Occupancy by Oral Sibutramine Dosed to Steady State: A PET Study Using 11C-DASB in Healthy Humans

    No full text
    Sibutramine is a centrally acting monoamine reuptake inhibitor prescribed as an appetite suppressant in the management of obesity. Its effects are mostly attributable to serotonin and norepinephrine transporter (SERT and NET, respectively) inhibition by its potent metabolites mono-desmethylsibutramine (M1) and di-desmethylsibutramine (M2). However, there is a paucity of in vivo data in humans about mechanisms underlying both clinical efficacy and the dose-independent non-response observed in a minority of patients. Twelve healthy male patients (mean age 41 years) completed a double-blind, placebo-controlled, within-subject crossover investigation of brain SERT occupancy by sibutramine 15 mg daily at steady state. Correlations were measured between occupancy and (i) plasma concentrations of sibutramine, M1 and M2; (ii) appetite suppression. 11C-DASB PET scans were performed on the HRRT camera. Binding potentials (BPND) were calculated by the Logan reference tissue (cerebellum) method. SERT occupancy was modest (mean 30±10%), was similar across brain regions, but varied widely across subjects (15–46%). Occupancy was correlated positively (p=0.09) with M2 concentration, but not with sibutramine or M1. No significant appetite suppression was seen at <25% occupancy and greatest suppression was associated with highest occupancy (25–46%). However, several subjects with occupancy (36–39%) in the higher range had no appetite suppression. SERT occupancy by clinical doses of sibutramine is of modest magnitude and may be mediated predominantly by M2 in humans. 5-HT reuptake inhibition may be necessary but is not sufficient for sibutramine's efficacy in humans, supporting preclinical data suggesting that the hypophagic effect requires the co-inhibition of both SERT and NET

    The Effect of Sibutramine, a Serotonin-Norepinephrine Reuptake Inhibitor, on Platelets and Fibrin Networks of Male Sprague-Dawley Rats: A Descriptive Study

    No full text
    Sibutramine is used in the treatment of obesity due to its ability to influence feelings of hunger and satiety by inhibiting the re-uptake of serotonin and noradrenalin in the central nervous system (CNS). Sibutramine use has been associated with numerous adverse events in particular cardiovascular complications possibly due to the formation of thrombi. This ultrastructural descriptive study investigated the effect of sibutramine on blood coagulation, specifically the effect on morphology of platelets and fibrin networks using scanning electron microscopy. Male Sprague–Dawley rats treated with either a recommended therapeutic dose [low dosage 1.32 mg/kg] or a toxicological higher dose [high dosage 13.2 mg/kg] of sibutramine for 28 days were used and compared to control animals. Blood samples were collected and plasma smears were prepared for platelet evaluation. Following the addition of thrombin to the plasma samples, the morphology of the fibrin clots was evaluated. Platelet evaluation by scanning electron microscopy revealed morphology typical of a prothrombotic state with a characteristic excessive platelet activation in both low-dose (LD) and high-dose (HD) rats. The fibrin clots of sibutramine-treated rats, LD and HD revealed fused thick fibers with thin fibers forming a netlike structure over the thick fibers which differ considerably from the organized structure of the control animals. It can be concluded that sibutramine alters the ultrastructure of platelets and fibrin networks creating a prothrombotic state.http://informahealthcare.com/journal/usp2015-12-30hb201
    corecore