17 research outputs found

    Validating RNAi Phenotypes in Drosophila Using a Synthetic RNAi-Resistant Transgene

    Get PDF
    RNA interference (RNAi) is a powerful and widely used approach to investigate gene function, but a major limitation of the approach is the high incidence of non-specific phenotypes that arise due to off-target effects. We previously showed that RNAi-mediated knock-down of pico, which encodes the only member of the MRL family of adapter proteins in Drosophila, resulted in reduction in cell number and size leading to reduced tissue growth. In contrast, a recent study reported that pico knockdown leads to tissue dysmorphology, pointing to an indirect role for pico in the control of wing size. To understand the cause of this disparity we have utilised a synthetic RNAi-resistant transgene, which bears minimal sequence homology to the predicted dsRNA but encodes wild type Pico protein, to reanalyse the RNAi lines used in the two studies. We find that the RNAi lines from different sources exhibit different effects, with one set of lines uniquely resulting in a tissue dysmorphology phenotype when expressed in the developing wing. Importantly, the loss of tissue morphology fails to be complemented by co-overexpression of RNAi-resistant pico suggesting that this phenotype is the result of an off-target effect. This highlights the importance of careful validation of RNAi-induced phenotypes, and shows the potential of synthetic transgenes for their experimental validation

    A RIAM/lamellipodin–talin–integrin complex forms the tip of sticky fingers that guide cell migration

    Get PDF
    The leading edge of migrating cells contains rapidly translocating activated integrins associated with growing actin filaments that form ‘sticky fingers ’ to sense extracellular matrix and guide cell migration. Here we utilized indirect bimolecular fluorescence complementation to visualize a molecular complex containing a Mig-10/RIAM/lamellipodin (MRL) protein (Rap1-GTP-interacting adaptor molecule (RIAM) or lamellipodin), talin and activated integrins in living cells. This complex localizes at the tips of growing actin filaments in lamellipodial and filopodial protrusions, thus corresponding to the tips of the ‘sticky fingers. ’ Formation of the complex requires talin to form a bridge between the MRL protein and the integrins. Moreover, disruption of the MRL protein–integrin–talin (MIT) complex markedly impairs cell protrusion. These data reveal the molecular basis of the formation of ‘sticky fingers ’ at the leading edge of migrating cells and show that an MIT complex drives these protrusions
    corecore