46 research outputs found

    Separating Lentiviral Vector Injection and Induction of Gene Expression in Time, Does Not Prevent an Immune Response to rtTA in Rats

    Get PDF
    BACKGROUND: Lentiviral gene transfer can provide long-term expression of therapeutic genes such as erythropoietin. Because overexpression of erythropoietin can be toxic, regulated expression is needed. Doxycycline inducible vectors can regulate expression of therapeutic transgenes efficiently. However, because they express an immunogenic transactivator (rtTA), their utility for gene therapy is limited. In addition to immunogenic proteins that are expressed from inducible vectors, injection of the vector itself is likely to elicit an immune response because viral capsid proteins will induce "danger signals" that trigger an innate response and recruit inflammatory cells. METHODOLOGY AND PRINCIPAL FINDINGS: We have developed an autoregulatory lentiviral vector in which basal expression of rtTA is very low. This enabled us to temporally separate the injection of virus and the expression of the therapeutic gene and rtTA. Wistar rats were injected with an autoregulatory rat erythropoietin expression vector. Two or six weeks after injection, erythropoietin expression was induced by doxycycline. This resulted in an increase of the hematocrit, irrespective of the timing of the induction. However, most rats only responded once to doxycycline administration. Antibodies against rtTA were detected in the early and late induction groups. CONCLUSIONS: Our results suggest that, even when viral vector capsid proteins have disappeared, expression of foreign proteins in muscle will lead to an immune respons

    Mouse models of breast cancer metastasis

    Get PDF
    Metastatic spread of cancer cells is the main cause of death of breast cancer patients, and elucidation of the molecular mechanisms underlying this process is a major focus in cancer research. The identification of appropriate therapeutic targets and proof-of-concept experimentation involves an increasing number of experimental mouse models, including spontaneous and chemically induced carcinogenesis, tumor transplantation, and transgenic and/or knockout mice. Here we give a progress report on how mouse models have contributed to our understanding of the molecular processes underlying breast cancer metastasis and on how such experimentation can open new avenues to the development of innovative cancer therapy

    Selection of alfalfa genotypes for resistance to the foliar pathogen Curvularia geniculata

    Get PDF
    ABSTRACT Foliar diseases impose severe restrictions on the persistence and productivity of Medicago sativa, both of which may be increased by developing disease resistant and more competitive genotypes that can improve pasture quality. We found Curvularia geniculata as the principal alfalfa foliar pathogen in the Brazilian state of Rio Grande do Sul (RS). Growth chamber experiments evaluated the resistance of alfalfa genotypes ‘E1C4’, ‘CPPSul’, ‘ABT 805’ and ‘CUF-101’ to C. geniculata as compared the control ‘Crioula’ genotype. These genotypes were also evaluated in field trials at a sea level site in Eldorado do Sul in central RS and at two sites £200 m above sea level, one in Bagé municipality in south west RS and the other at a farm near the town of Alto Feliz in north east RS. Plants were spray-inoculated with 1.6 x 106 ml-1 of C. geniculata spores and visually evaluated for leaf damage 14 days later. The C. geniculata infection rates varied from zero to 100%. Alfalfa persistence and forage mean dry mass (DM) production at the Eldorado site were measured during different seasons from November 2013 to January 2015 by calculating the incidence of invasive plants and morphologically separating leaves from stems and calculating both leaf and stem DM. Data were analysed using mixed statistical models. The best results for persistence and forage DM were shown by the ‘CPPSul’ genotypes (DM = 16,600 kg ha-1) and ‘Crioula’ (DM = 15,750 kg ha-1). These two genotypes will be used for subsequent investigations and selection cycles

    Dispersal of conidia of Ascochyta fabae f. sp. lentis from infected lentil plants by simulated wind and rain

    No full text
    Splash was shown to be an effective mechanism for short-range dispersal of conidia of Ascochyta fabae f. sp. lentis, the cause of ascochyta blight of lentil. The dispersal gradients were well described by the power law model in its linear form, 1ny = 1na - b 1nx. In still air the slope of the linearized dispersal gradient, b, ranged from 2.83 to 4.07 and was steeper for 4.9 mm than for 3.9 mm incident drops. Nevertheless, for all drop sizes tested, fewer than 50% of the conidia were splashed more than 15 cm from the source. The pattern of conidium dispersal was similar for both drop sizes when horizontal windspeeds were 2.5 or 5 mis. Wind significantly decreased the value of b (range 2.35-2.43 at 25 m/s, 1.71-1.91 at 5 m/s) and increased by about 2 m the maximum distance that conidia in ballistic droplets were deposited. In addition, the experiments suggested two other potentially important mechanisms for dispersal of the pathogen over longer distances, namely conidia in small air-borne droplets and windblown leaflets.Peer reviewe
    corecore