188 research outputs found

    Myofiber stress-response in myositis: parallel investigations on patients and experimental animal models of muscle regeneration and systemic inflammation

    Get PDF
    Introduction: The endoplasmic reticulum (ER) stress-response, evoked in mice by the overexpression of class I major histocompatibility complex antigen (MHC-I), was proposed as a major mechanism responsible for skeletal muscle damage and dysfunction in autoimmune myositis. The present study was undertaken to characterize in more detail the ER stress-response occurring in myofibers of patients with inflammatory myopathies, focusing on the expression and distribution of Grp94, calreticulin and Grp75, three ER chaperones involved in immunomodulation. Methods: Muscle biopsies were obtained from seven healthy subjects and 29 myositis patients, who were subdivided into groups based on the morphological evidence of inflammation and/or sarcolemmal immunoreactivity for MHC-I. Biopsies were analyzed by means of immunohistochemistry and western blot using anti-Grp94, anti-calreticulin and anti-Grp75 specific antibodies. Parallel analyses on these ER chaperones were conducted in rabbit and/or murine skeletal muscle after experimental induction of regeneration or systemic inflammation. Results: Upregulation of Grp94 characterized regenerating myofibers of myositis patients (P = 0.03, compared with values detected in biopsies without signs of muscle regeneration) and developing and regenerating myofibers of mouse muscles. Conversely, levels of calreticulin and Grp75 increased about fourfold and twofold, respectively, in patient biopsies positive for sarcolemmal MHC-I immunoreactivity, compared with healthy subjects and patients negative for both inflammation and MHC-I labeling (P < 0.005). Differently from calreticulin, the Grp75 level increased significantly also in patient biopsies that displayed occasional sarcolemmal MHC-I immunoreactivity (P = 0.002), suggesting the interference of other mechanisms. Experimental systemic inflammation achieved in mice and rabbits by a single injection of bacterial lipopolysaccharide significantly increased Grp75 and calreticulin but not MHC-I expression in muscles. Conclusions: These results indicate that, in myositis patients, muscle regeneration and inflammation, in addition to MHC-I upregulation, do evoke an ER stress-response characterized by the increased expression of Grp94 and Grp75, respectively. The increase in the muscle Grp75 level in patients showing occasional immunoreactivity for sarcolemmal MHC-I might be considered further as a broader indicator of idiopathic inflammatory myopathy

    Reciprocal Homer1a and Homer2 Isoform Expression Is a Key Mechanism for Muscle Soleus Atrophy in Spaceflown Mice

    Get PDF
    The molecular mechanisms of skeletal muscle atrophy under extended periods of either disuse or microgravity are not yet fully understood. The transition of Homer isoforms may play a key role during neuromuscular junction (NMJ) imbalance/plasticity in space. Here, we investigated the expression pattern of Homer short and long isoforms by gene array, qPCR, biochemistry, and laser confocal microscopy in skeletal muscles from male C57Bl/N6 mice (n = 5) housed for 30 days in space (Bion-flight = BF) compared to muscles from Bion biosatellite on the ground-housed animals (Bion ground = BG) and from standard cage housed animals (Flight control = FC). A comparison study was carried out with muscles of rats subjected to hindlimb unloading (HU). Gene array and qPCR results showed an increase in Homer1a transcripts, the short dominant negative isoform, in soleus (SOL) muscle after 30 days in microgravity, whereas it was only transiently increased after four days of HU. Conversely, Homer2 long-form was downregulated in SOL muscle in both models. Homer immunofluorescence intensity analysis at the NMJ of BF and HU animals showed comparable outcomes in SOL but not in the extensor digitorum longus (EDL) muscle. Reduced Homer crosslinking at the NMJ consequent to increased Homer1a and/or reduced Homer2 may contribute to muscle-type specific atrophy resulting from microgravity and HU disuse suggesting mutual mechanisms

    Re: Gold standards for scientists who are conducting animal-based exercise studies.

    No full text
    Comment on: J Appl Physiol. 2010 Jan;108(1):219-21

    Expression of neuronal intermediate filament proteins in the rabbit heart conduction tissue: ontogenetic implications

    No full text

    Identification of a novel type 2 fiber population in mammalian skeletal muscle by combined use of histochemical myosin ATPase and anti-myosin monoclonal antibodies.

    No full text
    A novel type of myosin heavy chain (MHC), called 2X, has been recently identified in type 2 fibers of rat skeletal muscles using an immunochemical approach. In the present study, the same panel of anti-MHC monoclonal antibodies was used in immunohistochemistry combined with enzyme histochemistry to identify and compare type 2X fibers in hindlimb skeletal muscles of rat, mouse, and guinea pig. Immunohistochemistry shows that 2X MHC is localized in a large subset of type 2 fibers and is co-expressed with 2A or 2B MHC in a small number of fibers. Enzyme histochemistry shows that type 2X fibers display low myosin ATPase activity after pre-incubation at pH 4.3 and high activity after paraformaldehyde pre-incubation at pH 10.4. After pre-incubation at pH 4.6, myosin ATPase shows intermediate and high activity in rat and mouse 2X fibers, respectively, whereas it is low in guinea pig 2X fibers. Succinate dehydrogenase displays moderate to high activity in 2X fibers of all species. Taken together, these staining patterns allow this novel fiber population to be distinguished from the other type 2 fibers using only enzyme histochemistry. Nevertheless, the combined use of immuno- and enzyme histochemistry prevents incorrect fiber typing due to the interspecies variability of myosin ATPase activity among the correspondent fiber types, and completely modifies the presently used classification of mouse type 2 fibers

    Master Regulators of Muscle Atrophy: Role of Costamere Components

    No full text
    The loss of muscle mass and force characterizes muscle atrophy in several different conditions, which share the expression of atrogenes and the activation of their transcriptional regulators. However, attempts to antagonize muscle atrophy development in different experimental contexts by targeting contributors to the atrogene pathway showed partial effects in most cases. Other master regulators might independently contribute to muscle atrophy, as suggested by our recent evidence about the co-requirement of the muscle-specific chaperone protein melusin to inhibit unloading muscle atrophy development. Furthermore, melusin and other muscle mass regulators, such as nNOS, belong to costameres, the macromolecular complexes that connect sarcolemma to myofibrils and to the extracellular matrix, in correspondence with specific sarcomeric sites. Costameres sense a mechanical load and transduce it both as lateral force and biochemical signals. Recent evidence further broadens this classic view, by revealing the crucial participation of costameres in a sarcolemmal &ldquo;signaling hub&rdquo; integrating mechanical and humoral stimuli, where mechanical signals are coupled with insulin and/or insulin-like growth factor stimulation to regulate muscle mass. Therefore, this review aims to enucleate available evidence concerning the early involvement of costamere components and additional putative master regulators in the development of major types of muscle atrophy

    Neuronal NOS dysfunction in muscle wasting

    No full text
    • …
    corecore