47 research outputs found

    Indexing Information for Data Forensics

    Get PDF
    We introduce novel techniques for organizing the indexing structures of how data is stored so that alterations from an original version can be detected and the changed values specifically identified. We give forensic constructions for several fundamental data structures, including arrays, linked lists, binary search trees, skip lists, and hash tables. Some of our constructions are based on a new reduced-randomness construction for nonadaptive combinatorial group testing

    Complete tree subset difference broadcast encryption scheme and its analysis

    Get PDF
    The subset difference (SD) method proposed by Naor, Naor and Lotspiech is the most popular broadcast encryption (BE) scheme. It is suitable for real-time applications like Pay-TV and has been suggested for use by the AACS standard for digital rights management in Blu-Ray and HD-DVD discs. The SD method assumes the number of users to be a power of two. We propose the complete tree subset difference (CTSD) method that allows the system to support an arbitrary number of users. In particular, it subsumes the SD method and all results proved for the CTSD method also hold for the SD method. Recurrences are obtained for the CTSD scheme to count the number, N(n, r, h), of possible ways r users in the system of n users can be revoked to result in a transmission overhead or header length of h. The recurrences lead to a polynomial time dynamic programming algorithm for computing N(n, r, h). Further, they provide bounds on the maximum possible header length. A probabilistic analysis is performed to obtain an O(r log n) time algorithm to compute the expected header length in the CTSD scheme. Further, for the SD scheme we obtain an explicit limiting upper bound on the expected header length

    Methods of measuring rheological properties of interfacial layers (Experimental methods of 2D rheology)

    Full text link

    Determinants of penetrance and variable expressivity in monogenic metabolic conditions across 77,184 exomes

    Get PDF
    Hundreds of thousands of genetic variants have been reported to cause severe monogenic diseases, but the probability that a variant carrier develops the disease (termed penetrance) is unknown for virtually all of them. Additionally, the clinical utility of common polygenetic variation remains uncertain. Using exome sequencing from 77,184 adult individuals (38,618 multi-ancestral individuals from a type 2 diabetes case-control study and 38,566 participants from the UK Biobank, for whom genotype array data were also available), we apply clinical standard-of-care gene variant curation for eight monogenic metabolic conditions. Rare variants causing monogenic diabetes and dyslipidemias display effect sizes significantly larger than the top 1% of the corresponding polygenic scores. Nevertheless, penetrance estimates for monogenic variant carriers average 60% or lower for most conditions. We assess epidemiologic and genetic factors contributing to risk prediction in monogenic variant carriers, demonstrating that inclusion of polygenic variation significantly improves biomarker estimation for two monogenic dyslipidemias
    corecore