2 research outputs found

    Can the pyruvate: ferredoxin oxidoreductase (PFOR) gene be used as an additional marker to discriminate among Blastocystis strains or subtypes?

    Get PDF
    Background Blastocystis spp. are the most prevalent intestinal eukaryotes identified in humans, with at least 17 genetic subtypes (ST) based on genes coding for the small-subunit ribosomal RNA (18S). It has been argued that the 18S gene should not be the marker of choice to discriminate between STs of these strains because this marker exhibits high intra-genomic polymorphism. By contrast, pyruvate:ferredoxin oxidoreductase (PFOR) is a relevant enzyme involved in the core energy metabolism of many anaerobic microorganisms such as Blastocystis, which, in other protozoa, shows more polymorphisms than the 18S gene and thus may offer finer discrimination when trying to identify Blastocystis ST. Therefore, the objective of the present study was to assess the suitability of the PFOR gene as an additional marker to discriminate among Blastocystis strains or subtypes from symptomatic carrier children. Methods Faecal samples from 192 children with gastrointestinal symptoms from the State of Mexico were submitted for coprological study. Twenty-one of these samples were positive only for Blastocystis spp.; these samples were analysed by PCR sequencing of regions of the 18S and PFOR genes. The amplicons were purified and sequenced; afterwards, both markers were assessed for genetic diversity. Results The 18S analysis showed the following frequencies of Blastocystis subtypes: ST3 = 43%; ST1 = 38%; ST2 = 14%; and ST7 = 5%. Additionally, using subtype-specific primer sets, two samples showed mixed Blastocystis ST1 and ST2 infection. For PFOR, Bayesian inference revealed the presence of three clades (I-III); two of them grouped different ST samples, and one grouped six samples of ST3 (III). Nucleotide diversity (π) and haplotype polymorphism (θ) for the 18S analysis were similar for ST1 and ST2 (π = ~0.025 and θ = ~0.036); remarkably, ST3 showed almost 10-fold lower values. For PFOR, a similar trend was found: clade I and II had π = ~0.05 and θ = ~0.05, whereas for clade III, the values were almost 6-fold lower. Conclusions Although the fragment of the PFOR gene analysed in the present study did not allow discrimination between Blastocystis STs, this marker grouped the samples in three clades with strengthened support, suggesting that PFOR may be under different selective pressures and evolutionary histories than the 18S gene. Interestingly, the ST3 sequences showed lower variability with probable purifying selection in both markers, meaning that evolutionary forces drive differential processes among Blastocystis STs

    Genetic Variability of the Internal Transcribed Spacer and Pyruvate:Ferredoxin Oxidoreductase Partial Gene of <i>Trichomonas vaginalis</i> from Female Patients

    No full text
    In the present study, we evaluated the genetic variability of the internal transcribed spacer (ITS) region and the pyruvate:ferredoxin oxidoreductase (pfor) A gene of Trichomonas vaginalis from female patients and its possible implications in the host–parasite relationship. Phylogenetic and genetics of populations analyses were performed by analyzing sequences of the ITS region and partial pfor A gene of clinical samples with T. vaginalis, as previously documented. Alignments of protein sequences and prediction of three-dimensional structure were also performed. Although no correlation between the main clinical characteristics of the samples and the results of phylogeny was found, a median-joining analysis of ITS haplotypes showed two main clusters. Also, pfor A, due to its phylogenetic divergence, could be used as a marker to confirm the genus and species of trichomonads. Alignment of protein sequences and prediction of three-dimensional structure showed that PFOR A had a highly conserved structure with two synonymous mutations in the PFOR domain, substituting a V for a G or a S for a P. Our results suggest that the role of genetic variability of PFOR and ITS may not be significant in the symptomatology of this pathogen; however, their utility as genus and species markers in trichomonads is promising
    corecore