2,417 research outputs found
Observation of coherent oscillation in single-passage Landau-Zener transitions
Landau-Zener transition (LZT) has been explored in a variety of physical
systems for coherent population transfer between different quantum states. In
recent years, there have been various proposals for applying LZT to quantum
information processing because when compared to the methods using ac pulse for
coherent population transfer, protocols based on LZT are less sensitive to
timing errors. However, the effect of finite range of qubit energy available to
LZT based state control operations has not been thoroughly examined. In this
work, we show that using the well-known Landau-Zener formula in the vicinity of
an avoided energy-level crossing will cause considerable errors due to coherent
oscillation of the transition probability in a single-passage LZT experiment.
The data agree well with the numerical simulations which take the transient
dynamics of LZT into account. These results not only provide a closer view on
the issue of finite-time LZT but also shed light on its effects on the quantum
state manipulation.Comment: 10 pages,5 figure
Effects of the endoparasitoid Cotesia chilonis (Hymenoptera: Braconidae) parasitism, venom, and calyx fluid on cellular and humoral immunity of its host Chilo suppressalis (Lepidoptera: Crambidae) larvae
AbstractThe larval endoparasitoid Cotesia chilonis injects venom and bracoviruses into its host Chilo suppressalis during oviposition. Here we study the effects of the polydnavirus (PDV)-carrying endoparasitoid C. chilonis (Hymenoptera: Braconidae) parasitism, venom and calyx fluid on host cellular and humoral immunity, specifically hemocyte composition, cellular spreading, encapsulation and melanization. Total hemocyte counts (THCs) were higher in parasitized larvae than in unparasitized larvae in the late stages following parasitization. While both plasmatocyte and granulocyte fractions and hemocyte mortality did not differ between parasitized and unparasitized hosts, in vitro spreading behavior of hemocytes was inhibited significantly by parasitism throughout the course of parasitoid development. C. chilonis parasitism suppressed the encapsulation response and melanization in the early stages. Venom alone did not alter cellular immune responses, including effects on THCs, mortality, hemocyte composition, cell spreading and encapsulation, but venom did inhibit humoral immunity by reducing melanization within 6h after injection. In contrast to venom, calyx fluid had a significant effect on cell spreading, encapsulation and melanization from 6h after injection. Dose–response injection studies indicated the effects of venom and calyx fluid synergized, showing a stronger and more persistent reduction in immune system responses than the effect of either injected alone
Research on vibro-acoustic characteristics of the aluminum motor shell based on GA-BP neural network and boundary element method
Firstly, the paper established a finite element model for a steel motor shell and computed related modals, vibration velocities, stress and strain respectively. Computational results show that the flange and end shield of the motor shell had the maximum vibration velocities and strain because these locations lacked the reinforcing ribs, while the maximum stress was mainly at joints between different structures. Secondly, the steel material was replaced by the aluminum alloy. Mechanical parameters of the motor shell were recomputed and compared with those of the steel structure. Results show that modal frequency on each order increased, which is good for avoiding the structural resonance. In addition, the maximum stress of the structure decreased by 4.4 MPa, and the maximum strain decreased by 0.27 mm, which could effectively improve the fatigue characteristics of the motor shell under long-term excitation. Then, the boundary element method was used to compute radiation noises of the motor shell in far field, where the radiation noise presented an obvious directivity. Finally, the paper proposed a GA-BP neural network model to predict the radiation noise of the motor and compared the prediction results with the boundary element. In the whole analyzed frequency band, the maximum difference between the neural network prediction and the real values did not exceed 5 dB, indicating that it is feasible to predict radiation noises of the motor by the neural network. Additionally, experiments were also conducted and compared with two kinds of numerical methods. Methods proposed in this paper provide some references for realizing the rapid noise reduction and light weight of motors
Simulating the Kibble-Zurek mechanism of the Ising model with a superconducting qubit system
The Kibble-Zurek mechanism (KZM) predicts the density of topological defects
produced in the dynamical processes of phase transitions in systems ranging
from cosmology to condensed matter and quantum materials. The similarity
between KZM and the Landau-Zener transition (LZT), which is a standard tool to
describe the dynamics of some non-equilibrium physics in contemporary physics,
is being extensively exploited. Here we demonstrate the equivalence between KZM
in the Ising model and LZT in a superconducting qubit system. We develop a
time-resolved approach to study quantum dynamics of LZT with nano-second
resolution. By using this technique, we simulate the key features of KZM in the
Ising model with LZT, e.g., the boundary between the adiabatic and impulse
regions, the freeze-out phenomenon in the impulse region, especially, the
scaling law of the excited state population as the square root of the quenching
rate. Our results supply the experimental evidence of the close connection
between KZM and LZT, two textbook paradigms to study the dynamics of the
non-equilibrium phenomena.Comment: Title changed, authors added, and some experimental data update
- …